Source code for langchain_community.vectorstores.zep

from __future__ import annotations

import logging
import warnings
from dataclasses import asdict, dataclass
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple

from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore

if TYPE_CHECKING:
    from zep_python.document import Document as ZepDocument
    from zep_python.document import DocumentCollection


logger = logging.getLogger()


[docs]@dataclass class CollectionConfig: """Configuration for a `Zep Collection`. If the collection does not exist, it will be created. Attributes: name (str): The name of the collection. description (Optional[str]): An optional description of the collection. metadata (Optional[Dict[str, Any]]): Optional metadata for the collection. embedding_dimensions (int): The number of dimensions for the embeddings in the collection. This should match the Zep server configuration if auto-embed is true. is_auto_embedded (bool): A flag indicating whether the collection is automatically embedded by Zep. """ name: str description: Optional[str] metadata: Optional[Dict[str, Any]] embedding_dimensions: int is_auto_embedded: bool
[docs]class ZepVectorStore(VectorStore): """`Zep` vector store. It provides methods for adding texts or documents to the store, searching for similar documents, and deleting documents. Search scores are calculated using cosine similarity normalized to [0, 1]. Args: api_url (str): The URL of the Zep API. collection_name (str): The name of the collection in the Zep store. api_key (Optional[str]): The API key for the Zep API. config (Optional[CollectionConfig]): The configuration for the collection. Required if the collection does not already exist. embedding (Optional[Embeddings]): Optional embedding function to use to embed the texts. Required if the collection is not auto-embedded. """
[docs] def __init__( self, collection_name: str, api_url: str, *, api_key: Optional[str] = None, config: Optional[CollectionConfig] = None, embedding: Optional[Embeddings] = None, ) -> None: super().__init__() if not collection_name: raise ValueError( "collection_name must be specified when using ZepVectorStore." ) try: from zep_python import ZepClient except ImportError: raise ImportError( "Could not import zep-python python package. " "Please install it with `pip install zep-python`." ) self._client = ZepClient(api_url, api_key=api_key) self.collection_name = collection_name # If for some reason the collection name is not the same as the one in the # config, update it. if config and config.name != self.collection_name: config.name = self.collection_name self._collection_config = config self._collection = self._load_collection() self._embedding = embedding
# self.add_texts(texts, metadatas=metadatas, **kwargs) @property def embeddings(self) -> Optional[Embeddings]: """Access the query embedding object if available.""" return self._embedding def _load_collection(self) -> DocumentCollection: """ Load the collection from the Zep backend. """ from zep_python import NotFoundError try: collection = self._client.document.get_collection(self.collection_name) except NotFoundError: logger.info( f"Collection {self.collection_name} not found. Creating new collection." ) collection = self._create_collection() return collection def _create_collection(self) -> DocumentCollection: """ Create a new collection in the Zep backend. """ if not self._collection_config: raise ValueError( "Collection config must be specified when creating a new collection." ) collection = self._client.document.add_collection( **asdict(self._collection_config) ) return collection def _generate_documents_to_add( self, texts: Iterable[str], metadatas: Optional[List[Dict[Any, Any]]] = None, document_ids: Optional[List[str]] = None, ) -> List[ZepDocument]: from zep_python.document import Document as ZepDocument embeddings = None if self._collection and self._collection.is_auto_embedded: if self._embedding is not None: warnings.warn( """The collection is set to auto-embed and an embedding function is present. Ignoring the embedding function.""", stacklevel=2, ) elif self._embedding is not None: embeddings = self._embedding.embed_documents(list(texts)) if self._collection and self._collection.embedding_dimensions != len( embeddings[0] ): raise ValueError( "The embedding dimensions of the collection and the embedding" " function do not match. Collection dimensions:" f" {self._collection.embedding_dimensions}, Embedding dimensions:" f" {len(embeddings[0])}" ) else: pass documents: List[ZepDocument] = [] for i, d in enumerate(texts): documents.append( ZepDocument( content=d, metadata=metadatas[i] if metadatas else None, document_id=document_ids[i] if document_ids else None, embedding=embeddings[i] if embeddings else None, ) ) return documents
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict[str, Any]]] = None, document_ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. document_ids: Optional list of document ids associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ if not self._collection: raise ValueError( "collection should be an instance of a Zep DocumentCollection" ) documents = self._generate_documents_to_add(texts, metadatas, document_ids) uuids = self._collection.add_documents(documents) return uuids
[docs] async def aadd_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict[str, Any]]] = None, document_ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore.""" if not self._collection: raise ValueError( "collection should be an instance of a Zep DocumentCollection" ) documents = self._generate_documents_to_add(texts, metadatas, document_ids) uuids = await self._collection.aadd_documents(documents) return uuids
[docs] def search( self, query: str, search_type: str, metadata: Optional[Dict[str, Any]] = None, k: int = 3, **kwargs: Any, ) -> List[Document]: """Return docs most similar to query using specified search type.""" if search_type == "similarity": return self.similarity_search(query, k=k, metadata=metadata, **kwargs) elif search_type == "mmr": return self.max_marginal_relevance_search( query, k=k, metadata=metadata, **kwargs ) else: raise ValueError( f"search_type of {search_type} not allowed. Expected " "search_type to be 'similarity' or 'mmr'." )
[docs] async def asearch( self, query: str, search_type: str, metadata: Optional[Dict[str, Any]] = None, k: int = 3, **kwargs: Any, ) -> List[Document]: """Return docs most similar to query using specified search type.""" if search_type == "similarity": return await self.asimilarity_search( query, k=k, metadata=metadata, **kwargs ) elif search_type == "mmr": return await self.amax_marginal_relevance_search( query, k=k, metadata=metadata, **kwargs ) else: raise ValueError( f"search_type of {search_type} not allowed. Expected " "search_type to be 'similarity' or 'mmr'." )
[docs] def similarity_search_with_score( self, query: str, k: int = 4, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search with distance.""" return self._similarity_search_with_relevance_scores( query, k=k, metadata=metadata, **kwargs )
def _similarity_search_with_relevance_scores( self, query: str, k: int = 4, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """ Default similarity search with relevance scores. Modify if necessary in subclass. Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Args: query: input text k: Number of Documents to return. Defaults to 4. metadata: Optional, metadata filter **kwargs: kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 and filter the resulting set of retrieved docs Returns: List of Tuples of (doc, similarity_score) """ if not self._collection: raise ValueError( "collection should be an instance of a Zep DocumentCollection" ) if not self._collection.is_auto_embedded and self._embedding: query_vector = self._embedding.embed_query(query) results = self._collection.search( embedding=query_vector, limit=k, metadata=metadata, **kwargs ) else: results = self._collection.search( query, limit=k, metadata=metadata, **kwargs ) return [ ( Document( page_content=doc.content, metadata=doc.metadata, ), doc.score or 0.0, ) for doc in results ]
[docs] async def asimilarity_search_with_relevance_scores( self, query: str, k: int = 4, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query.""" if not self._collection: raise ValueError( "collection should be an instance of a Zep DocumentCollection" ) if not self._collection.is_auto_embedded and self._embedding: query_vector = self._embedding.embed_query(query) results = await self._collection.asearch( embedding=query_vector, limit=k, metadata=metadata, **kwargs ) else: results = await self._collection.asearch( query, limit=k, metadata=metadata, **kwargs ) return [ ( Document( page_content=doc.content, metadata=doc.metadata, ), doc.score or 0.0, ) for doc in results ]
[docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. metadata: Optional, metadata filter Returns: List of Documents most similar to the query vector. """ if not self._collection: raise ValueError( "collection should be an instance of a Zep DocumentCollection" ) results = self._collection.search( embedding=embedding, limit=k, metadata=metadata, **kwargs ) return [ Document( page_content=doc.content, metadata=doc.metadata, ) for doc in results ]
[docs] async def asimilarity_search_by_vector( self, embedding: List[float], k: int = 4, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector.""" if not self._collection: raise ValueError( "collection should be an instance of a Zep DocumentCollection" ) results = self._collection.search( embedding=embedding, limit=k, metadata=metadata, **kwargs ) return [ Document( page_content=doc.content, metadata=doc.metadata, ) for doc in results ]
[docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Zep determines this automatically and this parameter is ignored. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. metadata: Optional, metadata to filter the resulting set of retrieved docs Returns: List of Documents selected by maximal marginal relevance. """ if not self._collection: raise ValueError( "collection should be an instance of a Zep DocumentCollection" ) results = self._collection.search( embedding=embedding, limit=k, metadata=metadata, search_type="mmr", mmr_lambda=lambda_mult, **kwargs, ) return [Document(page_content=d.content, metadata=d.metadata) for d in results]
[docs] async def amax_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance.""" if not self._collection: raise ValueError( "collection should be an instance of a Zep DocumentCollection" ) results = await self._collection.asearch( embedding=embedding, limit=k, metadata=metadata, search_type="mmr", mmr_lambda=lambda_mult, **kwargs, ) return [Document(page_content=d.content, metadata=d.metadata) for d in results]
[docs] @classmethod def from_texts( cls, texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, collection_name: str = "", api_url: str = "", api_key: Optional[str] = None, config: Optional[CollectionConfig] = None, **kwargs: Any, ) -> ZepVectorStore: """ Class method that returns a ZepVectorStore instance initialized from texts. If the collection does not exist, it will be created. Args: texts (List[str]): The list of texts to add to the vectorstore. embedding (Optional[Embeddings]): Optional embedding function to use to embed the texts. metadatas (Optional[List[Dict[str, Any]]]): Optional list of metadata associated with the texts. collection_name (str): The name of the collection in the Zep store. api_url (str): The URL of the Zep API. api_key (Optional[str]): The API key for the Zep API. config (Optional[CollectionConfig]): The configuration for the collection. kwargs: Additional parameters specific to the vectorstore. Returns: ZepVectorStore: An instance of ZepVectorStore. """ vecstore = cls( collection_name, api_url, api_key=api_key, config=config, embedding=embedding, ) vecstore.add_texts(texts, metadatas) return vecstore
[docs] def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None: """Delete by Zep vector UUIDs. Parameters ---------- ids : Optional[List[str]] The UUIDs of the vectors to delete. Raises ------ ValueError If no UUIDs are provided. """ if ids is None or len(ids) == 0: raise ValueError("No uuids provided to delete.") if self._collection is None: raise ValueError("No collection name provided.") for u in ids: self._collection.delete_document(u)