Source code for langchain_core.documents.transformers
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, Sequence
from langchain_core.runnables.config import run_in_executor
if TYPE_CHECKING:
from langchain_core.documents import Document
[docs]class BaseDocumentTransformer(ABC):
"""Abstract base class for document transformation.
A document transformation takes a sequence of Documents and returns a
sequence of transformed Documents.
Example:
.. code-block:: python
class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel):
embeddings: Embeddings
similarity_fn: Callable = cosine_similarity
similarity_threshold: float = 0.95
class Config:
arbitrary_types_allowed = True
def transform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
stateful_documents = get_stateful_documents(documents)
embedded_documents = _get_embeddings_from_stateful_docs(
self.embeddings, stateful_documents
)
included_idxs = _filter_similar_embeddings(
embedded_documents, self.similarity_fn, self.similarity_threshold
)
return [stateful_documents[i] for i in sorted(included_idxs)]
async def atransform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
raise NotImplementedError
""" # noqa: E501
[docs] @abstractmethod
def transform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
"""Transform a list of documents.
Args:
documents: A sequence of Documents to be transformed.
Returns:
A sequence of transformed Documents.
"""
[docs] async def atransform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
"""Asynchronously transform a list of documents.
Args:
documents: A sequence of Documents to be transformed.
Returns:
A sequence of transformed Documents.
"""
return await run_in_executor(
None, self.transform_documents, documents, **kwargs
)