from __future__ import annotations
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union, cast
from langchain_core.load.serializable import Serializable
from langchain_core.pydantic_v1 import Extra, Field
from langchain_core.utils import get_bolded_text
from langchain_core.utils._merge import merge_dicts, merge_lists
from langchain_core.utils.interactive_env import is_interactive_env
if TYPE_CHECKING:
from langchain_core.prompts.chat import ChatPromptTemplate
[docs]class BaseMessage(Serializable):
"""Base abstract message class.
Messages are the inputs and outputs of ChatModels.
"""
content: Union[str, List[Union[str, Dict]]]
"""The string contents of the message."""
additional_kwargs: dict = Field(default_factory=dict)
"""Reserved for additional payload data associated with the message.
For example, for a message from an AI, this could include tool calls as
encoded by the model provider.
"""
response_metadata: dict = Field(default_factory=dict)
"""Response metadata. For example: response headers, logprobs, token counts."""
type: str
"""The type of the message. Must be a string that is unique to the message type.
The purpose of this field is to allow for easy identification of the message type
when deserializing messages.
"""
name: Optional[str] = None
"""An optional name for the message.
This can be used to provide a human-readable name for the message.
Usage of this field is optional, and whether it's used or not is up to the
model implementation.
"""
id: Optional[str] = None
"""An optional unique identifier for the message. This should ideally be
provided by the provider/model which created the message."""
class Config:
extra = Extra.allow
def __init__(
self, content: Union[str, List[Union[str, Dict]]], **kwargs: Any
) -> None:
"""Pass in content as positional arg.
Args:
content: The string contents of the message.
kwargs: Additional fields to pass to the
"""
super().__init__(content=content, **kwargs)
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return whether this class is serializable. This is used to determine
whether the class should be included in the langchain schema.
Returns:
True if the class is serializable, False otherwise.
"""
return True
@classmethod
def get_lc_namespace(cls) -> List[str]:
"""Get the namespace of the langchain object.
Default is ["langchain", "schema", "messages"].
"""
return ["langchain", "schema", "messages"]
def __add__(self, other: Any) -> ChatPromptTemplate:
"""Concatenate this message with another message."""
from langchain_core.prompts.chat import ChatPromptTemplate
prompt = ChatPromptTemplate(messages=[self]) # type: ignore[call-arg]
return prompt + other
[docs] def pretty_repr(self, html: bool = False) -> str:
"""Get a pretty representation of the message.
Args:
html: Whether to format the message as HTML. If True, the message will be
formatted with HTML tags. Default is False.
Returns:
A pretty representation of the message.
"""
title = get_msg_title_repr(self.type.title() + " Message", bold=html)
# TODO: handle non-string content.
if self.name is not None:
title += f"\nName: {self.name}"
return f"{title}\n\n{self.content}"
[docs] def pretty_print(self) -> None:
print(self.pretty_repr(html=is_interactive_env())) # noqa: T201
[docs]def merge_content(
first_content: Union[str, List[Union[str, Dict]]],
*contents: Union[str, List[Union[str, Dict]]],
) -> Union[str, List[Union[str, Dict]]]:
"""Merge two message contents.
Args:
first_content: The first content. Can be a string or a list.
second_content: The second content. Can be a string or a list.
Returns:
The merged content.
"""
merged = first_content
for content in contents:
# If current is a string
if isinstance(merged, str):
# If the next chunk is also a string, then merge them naively
if isinstance(content, str):
merged = cast(str, merged) + content
# If the next chunk is a list, add the current to the start of the list
else:
merged = [merged] + content # type: ignore
elif isinstance(content, list):
# If both are lists
merged = merge_lists(cast(List, merged), content) # type: ignore
# If the first content is a list, and the second content is a string
else:
# If the last element of the first content is a string
# Add the second content to the last element
if merged and isinstance(merged[-1], str):
merged[-1] += content
# If second content is an empty string, treat as a no-op
elif content == "":
pass
else:
# Otherwise, add the second content as a new element of the list
merged.append(content)
return merged
[docs]class BaseMessageChunk(BaseMessage):
"""Message chunk, which can be concatenated with other Message chunks."""
@classmethod
def get_lc_namespace(cls) -> List[str]:
"""Get the namespace of the langchain object.
Default is ["langchain", "schema", "messages"].
"""
return ["langchain", "schema", "messages"]
def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore
"""Message chunks support concatenation with other message chunks.
This functionality is useful to combine message chunks yielded from
a streaming model into a complete message.
Args:
other: Another message chunk to concatenate with this one.
Returns:
A new message chunk that is the concatenation of this message chunk
and the other message chunk.
Raises:
TypeError: If the other object is not a message chunk.
For example,
`AIMessageChunk(content="Hello") + AIMessageChunk(content=" World")`
will give `AIMessageChunk(content="Hello World")`
"""
if isinstance(other, BaseMessageChunk):
# If both are (subclasses of) BaseMessageChunk,
# concat into a single BaseMessageChunk
return self.__class__( # type: ignore[call-arg]
id=self.id,
content=merge_content(self.content, other.content),
additional_kwargs=merge_dicts(
self.additional_kwargs, other.additional_kwargs
),
response_metadata=merge_dicts(
self.response_metadata, other.response_metadata
),
)
elif isinstance(other, list) and all(
isinstance(o, BaseMessageChunk) for o in other
):
content = merge_content(self.content, *(o.content for o in other))
additional_kwargs = merge_dicts(
self.additional_kwargs, *(o.additional_kwargs for o in other)
)
response_metadata = merge_dicts(
self.response_metadata, *(o.response_metadata for o in other)
)
return self.__class__( # type: ignore[call-arg]
id=self.id,
content=content,
additional_kwargs=additional_kwargs,
response_metadata=response_metadata,
)
else:
raise TypeError(
'unsupported operand type(s) for +: "'
f"{self.__class__.__name__}"
f'" and "{other.__class__.__name__}"'
)
[docs]def message_to_dict(message: BaseMessage) -> dict:
"""Convert a Message to a dictionary.
Args:
message: Message to convert.
Returns:
Message as a dict. The dict will have a "type" key with the message type
and a "data" key with the message data as a dict.
"""
return {"type": message.type, "data": message.dict()}
[docs]def messages_to_dict(messages: Sequence[BaseMessage]) -> List[dict]:
"""Convert a sequence of Messages to a list of dictionaries.
Args:
messages: Sequence of messages (as BaseMessages) to convert.
Returns:
List of messages as dicts.
"""
return [message_to_dict(m) for m in messages]
[docs]def get_msg_title_repr(title: str, *, bold: bool = False) -> str:
"""Get a title representation for a message.
Args:
title: The title.
bold: Whether to bold the title. Default is False.
Returns:
The title representation.
"""
padded = " " + title + " "
sep_len = (80 - len(padded)) // 2
sep = "=" * sep_len
second_sep = sep + "=" if len(padded) % 2 else sep
if bold:
padded = get_bolded_text(padded)
return f"{sep}{padded}{second_sep}"