Source code for langchain_experimental.agents.agent_toolkits.csv.base
from __future__ import annotations
from io import IOBase
from typing import TYPE_CHECKING, Any, List, Optional, Union
from langchain_experimental.agents.agent_toolkits.pandas.base import (
create_pandas_dataframe_agent,
)
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
from langchain_core.language_models import LanguageModelLike
[docs]def create_csv_agent(
llm: LanguageModelLike,
path: Union[str, IOBase, List[Union[str, IOBase]]],
pandas_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Create pandas dataframe agent by loading csv to a dataframe.
Args:
llm: Language model to use for the agent.
path: A string path, file-like object or a list of string paths/file-like
objects that can be read in as pandas DataFrames with pd.read_csv().
pandas_kwargs: Named arguments to pass to pd.read_csv().
kwargs: Additional kwargs to pass to langchain_experimental.agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent().
Returns:
An AgentExecutor with the specified agent_type agent and access to
a PythonAstREPLTool with the loaded DataFrame(s) and any user-provided extra_tools.
Example:
.. code-block:: python
from langchain_openai import ChatOpenAI
from langchain_experimental.agents import create_csv_agent
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
agent_executor = create_pandas_dataframe_agent(
llm,
"titanic.csv",
agent_type="openai-tools",
verbose=True
)
""" # noqa: E501
try:
import pandas as pd
except ImportError:
raise ImportError(
"pandas package not found, please install with `pip install pandas`."
)
_kwargs = pandas_kwargs or {}
if isinstance(path, (str, IOBase)):
df = pd.read_csv(path, **_kwargs)
elif isinstance(path, list):
df = []
for item in path:
if not isinstance(item, (str, IOBase)):
raise ValueError(f"Expected str or file-like object, got {type(path)}")
df.append(pd.read_csv(item, **_kwargs))
else:
raise ValueError(f"Expected str, list, or file-like object, got {type(path)}")
return create_pandas_dataframe_agent(llm, df, **kwargs)