Source code for langchain_experimental.plan_and_execute.planners.chat_planner
import re
from langchain.chains import LLMChain
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import SystemMessage
from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain_experimental.plan_and_execute.planners.base import LLMPlanner
from langchain_experimental.plan_and_execute.schema import (
Plan,
PlanOutputParser,
Step,
)
SYSTEM_PROMPT = (
"Let's first understand the problem and devise a plan to solve the problem."
" Please output the plan starting with the header 'Plan:' "
"and then followed by a numbered list of steps. "
"Please make the plan the minimum number of steps required "
"to accurately complete the task. If the task is a question, "
"the final step should almost always be 'Given the above steps taken, "
"please respond to the users original question'. "
"At the end of your plan, say '<END_OF_PLAN>'"
)
[docs]class PlanningOutputParser(PlanOutputParser):
"""Planning output parser."""
[docs] def parse(self, text: str) -> Plan:
steps = [Step(value=v) for v in re.split("\n\s*\d+\. ", text)[1:]]
return Plan(steps=steps)
[docs]def load_chat_planner(
llm: BaseLanguageModel, system_prompt: str = SYSTEM_PROMPT
) -> LLMPlanner:
"""
Load a chat planner.
Args:
llm: Language model.
system_prompt: System prompt.
Returns:
LLMPlanner
"""
prompt_template = ChatPromptTemplate.from_messages(
[
SystemMessage(content=system_prompt),
HumanMessagePromptTemplate.from_template("{input}"),
]
)
llm_chain = LLMChain(llm=llm, prompt=prompt_template)
return LLMPlanner(
llm_chain=llm_chain,
output_parser=PlanningOutputParser(),
stop=["<END_OF_PLAN>"],
)