Source code for langchain_experimental.rl_chain.pick_best_chain

from __future__ import annotations

import logging
from typing import Any, Dict, List, Optional, Tuple, Type, Union

from langchain.base_language import BaseLanguageModel
from langchain.chains.llm import LLMChain
from langchain_core.callbacks.manager import CallbackManagerForChainRun
from langchain_core.prompts import BasePromptTemplate

import langchain_experimental.rl_chain.base as base
from langchain_experimental.rl_chain.helpers import embed

logger = logging.getLogger(__name__)

# sentinel object used to distinguish between
# user didn't supply anything or user explicitly supplied None
SENTINEL = object()


[docs]class PickBestSelected(base.Selected): """Selected class for PickBest chain.""" index: Optional[int] probability: Optional[float] score: Optional[float]
[docs] def __init__( self, index: Optional[int] = None, probability: Optional[float] = None, score: Optional[float] = None, ): self.index = index self.probability = probability self.score = score
[docs]class PickBestEvent(base.Event[PickBestSelected]): """Event class for PickBest chain."""
[docs] def __init__( self, inputs: Dict[str, Any], to_select_from: Dict[str, Any], based_on: Dict[str, Any], selected: Optional[PickBestSelected] = None, ): super().__init__(inputs=inputs, selected=selected) self.to_select_from = to_select_from self.based_on = based_on
[docs]class PickBestFeatureEmbedder(base.Embedder[PickBestEvent]): """Embed the `BasedOn` and `ToSelectFrom` inputs into a format that can be used by the learning policy. Attributes: model name (Any, optional): The type of embeddings to be used for feature representation. Defaults to BERT SentenceTransformer. """ # noqa E501
[docs] def __init__( self, auto_embed: bool, model: Optional[Any] = None, *args: Any, **kwargs: Any ): super().__init__(*args, **kwargs) if model is None: from sentence_transformers import SentenceTransformer model = SentenceTransformer("all-mpnet-base-v2") self.model = model self.auto_embed = auto_embed
@staticmethod def _str(embedding: List[float]) -> str: return " ".join([f"{i}:{e}" for i, e in enumerate(embedding)])
[docs] def get_label(self, event: PickBestEvent) -> tuple: cost = None if event.selected: chosen_action = event.selected.index cost = ( -1.0 * event.selected.score if event.selected.score is not None else None ) prob = event.selected.probability return chosen_action, cost, prob else: return None, None, None
[docs] def get_context_and_action_embeddings(self, event: PickBestEvent) -> tuple: context_emb = embed(event.based_on, self.model) if event.based_on else None to_select_from_var_name, to_select_from = next( iter(event.to_select_from.items()), (None, None) ) action_embs = ( ( embed(to_select_from, self.model, to_select_from_var_name) if event.to_select_from else None ) if to_select_from else None ) if not context_emb or not action_embs: raise ValueError( "Context and to_select_from must be provided in the inputs dictionary" ) return context_emb, action_embs
[docs] def get_indexed_dot_product(self, context_emb: List, action_embs: List) -> Dict: import numpy as np unique_contexts = set() for context_item in context_emb: for ns, ee in context_item.items(): if isinstance(ee, list): for ea in ee: unique_contexts.add(f"{ns}={ea}") else: unique_contexts.add(f"{ns}={ee}") encoded_contexts = self.model.encode(list(unique_contexts)) context_embeddings = dict(zip(unique_contexts, encoded_contexts)) unique_actions = set() for action in action_embs: for ns, e in action.items(): if isinstance(e, list): for ea in e: unique_actions.add(f"{ns}={ea}") else: unique_actions.add(f"{ns}={e}") encoded_actions = self.model.encode(list(unique_actions)) action_embeddings = dict(zip(unique_actions, encoded_actions)) action_matrix = np.stack([v for k, v in action_embeddings.items()]) context_matrix = np.stack([v for k, v in context_embeddings.items()]) dot_product_matrix = np.dot(context_matrix, action_matrix.T) indexed_dot_product: Dict = {} for i, context_key in enumerate(context_embeddings.keys()): indexed_dot_product[context_key] = {} for j, action_key in enumerate(action_embeddings.keys()): indexed_dot_product[context_key][action_key] = dot_product_matrix[i, j] return indexed_dot_product
[docs] def format_auto_embed_on(self, event: PickBestEvent) -> str: chosen_action, cost, prob = self.get_label(event) context_emb, action_embs = self.get_context_and_action_embeddings(event) indexed_dot_product = self.get_indexed_dot_product(context_emb, action_embs) action_lines = [] for i, action in enumerate(action_embs): line_parts = [] dot_prods = [] if cost is not None and chosen_action == i: line_parts.append(f"{chosen_action}:{cost}:{prob}") for ns, action in action.items(): line_parts.append(f"|{ns}") elements = action if isinstance(action, list) else [action] nsa = [] for elem in elements: line_parts.append(f"{elem}") ns_a = f"{ns}={elem}" nsa.append(ns_a) for k, v in indexed_dot_product.items(): dot_prods.append(v[ns_a]) nsa_str = " ".join(nsa) line_parts.append(f"|# {nsa_str}") line_parts.append(f"|dotprod {self._str(dot_prods)}") action_lines.append(" ".join(line_parts)) shared = [] for item in context_emb: for ns, context in item.items(): shared.append(f"|{ns}") elements = context if isinstance(context, list) else [context] nsc = [] for elem in elements: shared.append(f"{elem}") nsc.append(f"{ns}={elem}") nsc_str = " ".join(nsc) shared.append(f"|@ {nsc_str}") return "shared " + " ".join(shared) + "\n" + "\n".join(action_lines)
[docs] def format_auto_embed_off(self, event: PickBestEvent) -> str: """ Converts the `BasedOn` and `ToSelectFrom` into a format that can be used by VW """ chosen_action, cost, prob = self.get_label(event) context_emb, action_embs = self.get_context_and_action_embeddings(event) example_string = "" example_string += "shared " for context_item in context_emb: for ns, based_on in context_item.items(): e = " ".join(based_on) if isinstance(based_on, list) else based_on example_string += f"|{ns} {e} " example_string += "\n" for i, action in enumerate(action_embs): if cost is not None and chosen_action == i: example_string += f"{chosen_action}:{cost}:{prob} " for ns, action_embedding in action.items(): e = ( " ".join(action_embedding) if isinstance(action_embedding, list) else action_embedding ) example_string += f"|{ns} {e} " example_string += "\n" # Strip the last newline return example_string[:-1]
[docs] def format(self, event: PickBestEvent) -> str: if self.auto_embed: return self.format_auto_embed_on(event) else: return self.format_auto_embed_off(event)
[docs]class PickBestRandomPolicy(base.Policy[PickBestEvent]): """Random policy for PickBest chain."""
[docs] def __init__(self, feature_embedder: base.Embedder, **kwargs: Any): self.feature_embedder = feature_embedder
[docs] def predict(self, event: PickBestEvent) -> List[Tuple[int, float]]: num_items = len(event.to_select_from) return [(i, 1.0 / num_items) for i in range(num_items)]
[docs] def learn(self, event: PickBestEvent) -> None: pass
[docs] def log(self, event: PickBestEvent) -> None: pass
[docs]class PickBest(base.RLChain[PickBestEvent]): """Chain that leverages the Vowpal Wabbit (VW) model for reinforcement learning with a context, with the goal of modifying the prompt before the LLM call. Each invocation of the chain's `run()` method should be equipped with a set of potential actions (`ToSelectFrom`) and will result in the selection of a specific action based on the `BasedOn` input. This chosen action then informs the LLM (Language Model) prompt for the subsequent response generation. The standard operation flow of this Chain includes: 1. The Chain is invoked with inputs containing the `BasedOn` criteria and a list of potential actions (`ToSelectFrom`). 2. An action is selected based on the `BasedOn` input. 3. The LLM is called with the dynamic prompt, producing a response. 4. If a `selection_scorer` is provided, it is used to score the selection. 5. The internal Vowpal Wabbit model is updated with the `BasedOn` input, the chosen `ToSelectFrom` action, and the resulting score from the scorer. 6. The final response is returned. Expected input dictionary format: - At least one variable encapsulated within `BasedOn` to serve as the selection criteria. - A single list variable within `ToSelectFrom`, representing potential actions for the VW model. This list can take the form of: - A list of strings, e.g., `action = ToSelectFrom(["action1", "action2", "action3"])` - A list of list of strings e.g. `action = ToSelectFrom([["action1", "another identifier of action1"], ["action2", "another identifier of action2"]])` - A list of dictionaries, where each dictionary represents an action with namespace names as keys and corresponding action strings as values. For instance, `action = ToSelectFrom([{"namespace1": ["action1", "another identifier of action1"], "namespace2": "action2"}, {"namespace1": "action3", "namespace2": "action4"}])`. Extends: RLChain Attributes: feature_embedder (PickBestFeatureEmbedder, optional): Is an advanced attribute. Responsible for embedding the `BasedOn` and `ToSelectFrom` inputs. If omitted, a default embedder is utilized. """ # noqa E501 def __init__( self, *args: Any, **kwargs: Any, ): auto_embed = kwargs.get("auto_embed", False) feature_embedder = kwargs.get("feature_embedder", None) if feature_embedder: if "auto_embed" in kwargs: logger.warning( "auto_embed will take no effect when explicit feature_embedder is provided" # noqa E501 ) # turning auto_embed off for cli setting below auto_embed = False else: feature_embedder = PickBestFeatureEmbedder(auto_embed=auto_embed) kwargs["feature_embedder"] = feature_embedder vw_cmd = kwargs.get("vw_cmd", []) if vw_cmd: if "--cb_explore_adf" not in vw_cmd: raise ValueError( "If vw_cmd is specified, it must include --cb_explore_adf" ) else: interactions = ["--interactions=::"] if auto_embed: interactions = [ "--interactions=@#", "--ignore_linear=@", "--ignore_linear=#", ] vw_cmd = interactions + [ "--cb_explore_adf", "--coin", "--squarecb", "--quiet", ] kwargs["vw_cmd"] = vw_cmd super().__init__(*args, **kwargs) def _call_before_predict(self, inputs: Dict[str, Any]) -> PickBestEvent: context, actions = base.get_based_on_and_to_select_from(inputs=inputs) if not actions: raise ValueError( "No variables using 'ToSelectFrom' found in the inputs. Please include at least one variable containing a list to select from." # noqa E501 ) if len(list(actions.values())) > 1: raise ValueError( "Only one variable using 'ToSelectFrom' can be provided in the inputs for the PickBest chain. Please provide only one variable containing a list to select from." # noqa E501 ) if not context: raise ValueError( "No variables using 'BasedOn' found in the inputs. Please include at least one variable containing information to base the selected of ToSelectFrom on." # noqa E501 ) event = PickBestEvent(inputs=inputs, to_select_from=actions, based_on=context) return event def _call_after_predict_before_llm( self, inputs: Dict[str, Any], event: PickBestEvent, prediction: List[Tuple[int, float]], ) -> Tuple[Dict[str, Any], PickBestEvent]: import numpy as np prob_sum = sum(prob for _, prob in prediction) probabilities = [prob / prob_sum for _, prob in prediction] ## sample from the pmf sampled_index = np.random.choice(len(prediction), p=probabilities) sampled_ap = prediction[sampled_index] sampled_action = sampled_ap[0] sampled_prob = sampled_ap[1] selected = PickBestSelected(index=sampled_action, probability=sampled_prob) event.selected = selected # only one key, value pair in event.to_select_from key, value = next(iter(event.to_select_from.items())) next_chain_inputs = inputs.copy() next_chain_inputs.update({key: value[event.selected.index]}) return next_chain_inputs, event def _call_after_llm_before_scoring( self, llm_response: str, event: PickBestEvent ) -> Tuple[Dict[str, Any], PickBestEvent]: next_chain_inputs = event.inputs.copy() # only one key, value pair in event.to_select_from value = next(iter(event.to_select_from.values())) v = ( value[event.selected.index] if event.selected else event.to_select_from.values() ) next_chain_inputs.update( { self.selected_based_on_input_key: str(event.based_on), self.selected_input_key: v, } ) return next_chain_inputs, event def _call_after_scoring_before_learning( self, event: PickBestEvent, score: Optional[float] ) -> PickBestEvent: if event.selected: event.selected.score = score return event def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: return super()._call(run_manager=run_manager, inputs=inputs) @property def _chain_type(self) -> str: return "rl_chain_pick_best"
[docs] @classmethod def from_llm( cls: Type[PickBest], llm: BaseLanguageModel, prompt: BasePromptTemplate, selection_scorer: Union[base.AutoSelectionScorer, object] = SENTINEL, **kwargs: Any, ) -> PickBest: llm_chain = LLMChain(llm=llm, prompt=prompt) if selection_scorer is SENTINEL: selection_scorer = base.AutoSelectionScorer(llm=llm_chain.llm) # type: ignore[call-arg] return PickBest( llm_chain=llm_chain, prompt=prompt, selection_scorer=selection_scorer, **kwargs, )