Source code for langchain_experimental.tot.base
from __future__ import annotations
from textwrap import indent
from typing import Any, Dict, List, Optional, Type
from langchain.base_language import BaseLanguageModel
from langchain.chains.base import Chain
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain_experimental.tot.checker import ToTChecker
from langchain_experimental.tot.controller import ToTController
from langchain_experimental.tot.memory import ToTDFSMemory
from langchain_experimental.tot.thought import Thought, ThoughtValidity
from langchain_experimental.tot.thought_generation import (
BaseThoughtGenerationStrategy,
ProposePromptStrategy,
)
[docs]class ToTChain(Chain):
"""
Chain implementing the Tree of Thought (ToT).
"""
llm: BaseLanguageModel
"""
Language model to use. It must be set to produce different variations for
the same prompt.
"""
checker: ToTChecker
"""ToT Checker to use."""
output_key: str = "response" #: :meta private:
k: int = 10
"""The maximum number of conversation rounds"""
c: int = 3
"""The number of children to explore at each node"""
tot_memory: ToTDFSMemory = ToTDFSMemory()
tot_controller: ToTController = ToTController()
tot_strategy_class: Type[BaseThoughtGenerationStrategy] = ProposePromptStrategy
verbose_llm: bool = False
class Config:
arbitrary_types_allowed = True
extra = "forbid"
[docs] @classmethod
def from_llm(cls, llm: BaseLanguageModel, **kwargs: Any) -> ToTChain:
"""
Create a ToTChain from a language model.
:param llm: The language model to use.
:param kwargs: Additional arguments to pass to the ToTChain constructor.
"""
return cls(llm=llm, **kwargs)
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
self.tot_controller.c = self.c
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return ["problem_description"]
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
return [self.output_key]
[docs] def log_thought(
self,
thought: Thought,
level: int,
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> None:
if run_manager:
colors = {
ThoughtValidity.VALID_FINAL: "green",
ThoughtValidity.VALID_INTERMEDIATE: "yellow",
ThoughtValidity.INVALID: "red",
}
text = indent(f"Thought: {thought.text}\n", prefix=" " * level)
run_manager.on_text(
text=text, color=colors[thought.validity], verbose=self.verbose
)
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
if run_manager:
run_manager.on_text(text="Starting the ToT solve procedure.\n")
problem_description = inputs["problem_description"]
checker_inputs = {"problem_description": problem_description}
thoughts_path: tuple[str, ...] = ()
thought_generator = self.tot_strategy_class( # type: ignore[call-arg]
llm=self.llm, c=self.c, verbose=self.verbose_llm
)
level = 0
for _ in range(self.k):
level = self.tot_memory.level
thought_text = thought_generator.next_thought(
problem_description, thoughts_path, callbacks=_run_manager.get_child()
)
checker_inputs["thoughts"] = thoughts_path + (thought_text,)
thought_validity = self.checker(
checker_inputs, callbacks=_run_manager.get_child()
)["validity"]
thought = Thought(text=thought_text, validity=thought_validity)
if thought.validity == ThoughtValidity.VALID_FINAL:
self.log_thought(thought, level, run_manager)
return {self.output_key: thought.text}
self.tot_memory.store(thought)
self.log_thought(thought, level, run_manager)
thoughts_path = self.tot_controller(self.tot_memory)
return {self.output_key: "No solution found"}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
raise NotImplementedError("Async not implemented yet")
@property
def _chain_type(self) -> str:
return "tot"