Source code for langchain_experimental.video_captioning.models
from datetime import datetime
from typing import Any
[docs]class BaseModel:
[docs] def __init__(self, start_time: int, end_time: int) -> None:
# Start and end times representing milliseconds
self._start_time = start_time
self._end_time = end_time
@property
def start_time(self) -> int:
return self._start_time
@start_time.setter
def start_time(self, value: int) -> None:
self._start_time = value
@property
def end_time(self) -> int:
return self._end_time
@end_time.setter
def end_time(self, value: int) -> None:
self._end_time = value
def __str__(self) -> str:
return f"start_time: {self.start_time}, end_time: {self.end_time}"
[docs] @classmethod
def from_srt(cls, start_time: str, end_time: str, *args: Any) -> "BaseModel":
return cls(
cls._srt_time_to_ms(start_time), cls._srt_time_to_ms(end_time), *args
)
@staticmethod
def _srt_time_to_ms(srt_time_string: str) -> int:
# Parse SRT time string into a datetime object
time_format = "%H:%M:%S,%f"
dt = datetime.strptime(srt_time_string, time_format)
ms = dt.microsecond // 1000
return dt.second * 1000 + ms
[docs]class VideoModel(BaseModel):
[docs] def __init__(self, start_time: int, end_time: int, image_description: str) -> None:
super().__init__(start_time, end_time)
self._image_description = image_description
@property
def image_description(self) -> str:
return self._image_description
@image_description.setter
def image_description(self, value: str) -> None:
self._image_description = value
def __str__(self) -> str:
return f"{super().__str__()}, image_description: {self.image_description}"
[docs] def similarity_score(self, other: "VideoModel") -> float:
# Tokenize the image descriptions by extracting individual words, stripping
# trailing 's' (plural = singular) and converting the words to lowercase in
# order to be case-insensitive
self_tokenized = set(
word.lower().rstrip("s") for word in self.image_description.split()
)
other_tokenized = set(
word.lower().rstrip("s") for word in other.image_description.split()
)
# Find common words
common_words = self_tokenized.intersection(other_tokenized)
# Calculate similarity score
similarity_score = (
len(common_words) / max(len(self_tokenized), len(other_tokenized)) * 100
)
return similarity_score
[docs]class AudioModel(BaseModel):
[docs] def __init__(self, start_time: int, end_time: int, subtitle_text: str) -> None:
super().__init__(start_time, end_time)
self._subtitle_text = subtitle_text
@property
def subtitle_text(self) -> str:
return self._subtitle_text
@subtitle_text.setter
def subtitle_text(self, value: str) -> None:
self._subtitle_text = value
def __str__(self) -> str:
return f"{super().__str__()}, subtitle_text: {self.subtitle_text}"
[docs]class CaptionModel(BaseModel):
[docs] def __init__(self, start_time: int, end_time: int, closed_caption: str) -> None:
super().__init__(start_time, end_time)
self._closed_caption = closed_caption
@property
def closed_caption(self) -> str:
return self._closed_caption
@closed_caption.setter
def closed_caption(self, value: str) -> None:
self._closed_caption = value
[docs] def add_subtitle_text(self, subtitle_text: str) -> "CaptionModel":
self._closed_caption = self._closed_caption + " " + subtitle_text
return self
def __str__(self) -> str:
return f"{super().__str__()}, closed_caption: {self.closed_caption}"
[docs] def to_srt_entry(self, index: int) -> str:
def _ms_to_srt_time(ms: int) -> str:
"""Converts milliseconds to SRT time format 'HH:MM:SS,mmm'."""
hours = int(ms // 3600000)
minutes = int((ms % 3600000) // 60000)
seconds = int((ms % 60000) // 1000)
milliseconds = int(ms % 1000)
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
return "\n".join(
[
f"""{index}
{_ms_to_srt_time(self._start_time)} --> {_ms_to_srt_time(self._end_time)}
{self._closed_caption}""",
]
)
[docs] @classmethod
def from_audio_model(cls, audio_model: AudioModel) -> "CaptionModel":
return cls(
audio_model.start_time, audio_model.end_time, audio_model.subtitle_text
)
[docs] @classmethod
def from_video_model(cls, video_model: VideoModel) -> "CaptionModel":
return cls(
video_model.start_time,
video_model.end_time,
f"[{video_model.image_description}]",
)