from typing import Dict, List, Optional, Tuple
from langchain.chains.llm import LLMChain
from langchain.schema.language_model import BaseLanguageModel
from langchain_core.callbacks.manager import CallbackManagerForChainRun
from langchain_experimental.video_captioning.models import (
AudioModel,
CaptionModel,
VideoModel,
)
from langchain_experimental.video_captioning.prompts import (
VALIDATE_AND_ADJUST_DESCRIPTION_PROMPT,
)
[docs]class CombineProcessor:
[docs] def __init__(
self, llm: BaseLanguageModel, verbose: bool = True, char_limit: int = 20
):
self.llm = llm
self.verbose = verbose
# Adjust as needed. Be careful adjusting it too low because OpenAI may
# produce unwanted output
self._CHAR_LIMIT = char_limit
[docs] def process(
self,
video_models: List[VideoModel],
audio_models: List[AudioModel],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> List[CaptionModel]:
caption_models = []
audio_index = 0
for video_model in video_models:
while audio_index < len(audio_models):
audio_model = audio_models[audio_index]
overlap_start, overlap_end = self._check_overlap(
video_model, audio_model
)
if overlap_start == -1:
if audio_model.start_time <= video_model.start_time:
caption_models.append(
CaptionModel.from_audio_model(audio_model)
)
audio_index += 1
else:
break
else:
self._handle_overlap(
caption_models,
video_model,
audio_model,
overlap_start,
overlap_end,
)
# Update audio model or pop if it's fully used
if audio_model.end_time <= overlap_end:
audio_index += 1
else:
audio_model.start_time = overlap_end
caption_models.append(CaptionModel.from_video_model(video_model))
# Add remaining audio models
for i in range(audio_index, len(audio_models)):
caption_models.append(CaptionModel.from_audio_model(audio_models[i]))
return caption_models
@staticmethod
def _check_overlap(
video_model: VideoModel, audio_model: AudioModel
) -> Tuple[int, int]:
overlap_start = max(audio_model.start_time, video_model.start_time)
overlap_end = min(audio_model.end_time, video_model.end_time)
if overlap_start < overlap_end:
return overlap_start, overlap_end
return -1, -1
def _handle_overlap(
self,
caption_models: List[CaptionModel],
video_model: VideoModel,
audio_model: AudioModel,
overlap_start: int,
overlap_end: int,
) -> None:
# Handle non-overlapping part
if video_model.start_time < overlap_start:
caption_models.append(
CaptionModel.from_video_model(
VideoModel(
video_model.start_time,
overlap_start,
video_model.image_description,
)
)
)
video_model.start_time = overlap_start
# Handle the combined caption during overlap
caption_text = self._validate_and_adjust_description(audio_model, video_model)
subtitle_text = audio_model.subtitle_text
caption_models.append(
CaptionModel.from_video_model(
VideoModel(overlap_start, overlap_end, caption_text)
).add_subtitle_text(subtitle_text)
)
# Update video model start time for remaining part
if video_model.end_time > overlap_end:
video_model.start_time = overlap_end
def _validate_and_adjust_description(
self,
audio_model: AudioModel,
video_model: VideoModel,
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> str:
conversation = LLMChain(
llm=self.llm,
prompt=VALIDATE_AND_ADJUST_DESCRIPTION_PROMPT,
verbose=True,
callbacks=run_manager.get_child() if run_manager else None,
)
# Get response from OpenAI using LLMChain
response: Dict[str, str] = conversation(
{
"limit": self._CHAR_LIMIT,
"subtitle": audio_model.subtitle_text,
"description": video_model.image_description,
}
)
# Take out the Result: part of the response
return response["text"].replace("Result:", "").strip()