from __future__ import annotations
import json
import logging
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Sequence,
Type,
TypedDict,
Union,
cast,
)
import google.cloud.aiplatform_v1beta1.types as gapic
import vertexai.generative_models as vertexai # type: ignore
from langchain_core.exceptions import OutputParserException
from langchain_core.output_parsers import BaseOutputParser
from langchain_core.outputs import ChatGeneration, Generation
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.tools import BaseTool
from langchain_core.tools import tool as callable_as_lc_tool
from langchain_core.utils.function_calling import (
FunctionDescription,
convert_to_openai_tool,
)
from langchain_core.utils.json_schema import dereference_refs
logger = logging.getLogger(__name__)
_FunctionDeclarationLike = Union[
BaseTool,
Type[BaseModel],
FunctionDescription,
Callable,
vertexai.FunctionDeclaration,
Dict[str, Any],
]
_GoogleSearchRetrievalLike = Union[
gapic.GoogleSearchRetrieval,
Dict[str, Any],
]
_RetrievalLike = Union[gapic.Retrieval, Dict[str, Any]]
class _ToolDictLike(TypedDict):
function_declarations: Optional[List[_FunctionDeclarationLike]]
google_search_retrieval: Optional[_GoogleSearchRetrievalLike]
retrieval: Optional[_RetrievalLike]
_ToolType = Union[gapic.Tool, vertexai.Tool, _ToolDictLike, _FunctionDeclarationLike]
_ToolsType = Sequence[_ToolType]
_ALLOWED_SCHEMA_FIELDS = []
_ALLOWED_SCHEMA_FIELDS.extend([f.name for f in gapic.Schema()._pb.DESCRIPTOR.fields])
_ALLOWED_SCHEMA_FIELDS.extend(
[
f
for f in gapic.Schema.to_dict(
gapic.Schema(), preserving_proto_field_name=False
).keys()
]
)
_ALLOWED_SCHEMA_FIELDS_SET = set(_ALLOWED_SCHEMA_FIELDS)
def _format_json_schema_to_gapic(schema: Dict[str, Any]) -> Dict[str, Any]:
converted_schema: Dict[str, Any] = {}
for key, value in schema.items():
if key == "definitions":
continue
elif key == "items":
converted_schema["items"] = _format_json_schema_to_gapic(value)
elif key == "properties":
if "properties" not in converted_schema:
converted_schema["properties"] = {}
for pkey, pvalue in value.items():
converted_schema["properties"][pkey] = _format_json_schema_to_gapic(
pvalue
)
continue
elif key in ["type", "_type"]:
converted_schema["type"] = str(value).upper()
elif key == "allOf":
if len(value) > 1:
logger.warning(
"Only first value for 'allOf' key is supported. "
f"Got {len(value)}, ignoring other than first value!"
)
return _format_json_schema_to_gapic(value[0])
elif key not in _ALLOWED_SCHEMA_FIELDS_SET:
logger.warning(f"Key '{key}' is not supported in schema, ignoring")
else:
converted_schema[key] = value
return converted_schema
def _dict_to_gapic_schema(schema: Dict[str, Any]) -> gapic.Schema:
dereferenced_schema = dereference_refs(schema)
formatted_schema = _format_json_schema_to_gapic(dereferenced_schema)
json_schema = json.dumps(formatted_schema)
return gapic.Schema.from_json(json_schema)
def _format_base_tool_to_function_declaration(
tool: BaseTool,
) -> gapic.FunctionDeclaration:
"Format tool into the Vertex function API."
if not tool.args_schema:
return gapic.FunctionDeclaration(
name=tool.name,
description=tool.description,
parameters=gapic.Schema(
type=gapic.Type.OBJECT,
properties={
"__arg1": gapic.Schema(type=gapic.Type.STRING),
},
required=["__arg1"],
),
)
schema = tool.args_schema.schema()
parameters = _dict_to_gapic_schema(schema)
return gapic.FunctionDeclaration(
name=tool.name or schema.get("title"),
description=tool.description or schema.get("description"),
parameters=parameters,
)
def _format_pydantic_to_function_declaration(
pydantic_model: Type[BaseModel],
) -> gapic.FunctionDeclaration:
schema = pydantic_model.schema()
return gapic.FunctionDeclaration(
name=schema["title"],
description=schema.get("description", ""),
parameters=_dict_to_gapic_schema(schema),
)
def _format_dict_to_function_declaration(
tool: Union[FunctionDescription, Dict[str, Any]],
) -> gapic.FunctionDeclaration:
return gapic.FunctionDeclaration(
name=tool.get("name"),
description=tool.get("description"),
parameters=_dict_to_gapic_schema(tool.get("parameters", {})),
)
def _format_vertex_to_function_declaration(
tool: vertexai.FunctionDeclaration,
) -> gapic.FunctionDeclaration:
tool_dict = tool.to_dict()
return _format_dict_to_function_declaration(tool_dict)
def _format_to_gapic_function_declaration(
tool: _FunctionDeclarationLike,
) -> gapic.FunctionDeclaration:
"Format tool into the Vertex function declaration."
if isinstance(tool, BaseTool):
return _format_base_tool_to_function_declaration(tool)
elif isinstance(tool, type) and issubclass(tool, BaseModel):
return _format_pydantic_to_function_declaration(tool)
elif callable(tool):
return _format_base_tool_to_function_declaration(callable_as_lc_tool()(tool))
elif isinstance(tool, vertexai.FunctionDeclaration):
return _format_vertex_to_function_declaration(tool)
elif isinstance(tool, dict):
# this could come from
# 'langchain_core.utils.function_calling.convert_to_openai_tool'
function = convert_to_openai_tool(cast(dict, tool))["function"]
return _format_dict_to_function_declaration(cast(FunctionDescription, function))
else:
raise ValueError(f"Unsupported tool call type {tool}")
def _format_to_gapic_tool(tools: _ToolsType) -> gapic.Tool:
gapic_tool = gapic.Tool()
for tool in tools:
if any(f in gapic_tool for f in ["google_search_retrieval", "retrieval"]):
raise ValueError(
"Providing multiple retrieval, google_search_retrieval"
" or mixing with function_declarations is not supported"
)
if isinstance(tool, (gapic.Tool, vertexai.Tool)):
rt = (
tool if isinstance(tool, gapic.Tool) else tool._raw_tool # type: ignore
)
if "retrieval" in rt:
gapic_tool.retrieval = rt.retrieval
if "google_search_retrieval" in rt:
gapic_tool.google_search_retrieval = rt.google_search_retrieval
if "function_declarations" in rt:
gapic_tool.function_declarations.extend(rt.function_declarations)
elif isinstance(tool, dict):
# not _ToolDictLike
if not any(
f in tool
for f in [
"function_declarations",
"google_search_retrieval",
"retrieval",
]
):
fd = _format_to_gapic_function_declaration(tool)
gapic_tool.function_declarations.append(fd)
continue
# _ToolDictLike
tool = cast(_ToolDictLike, tool)
if "function_declarations" in tool:
function_declarations = tool["function_declarations"]
if not isinstance(tool["function_declarations"], list):
raise ValueError(
"function_declarations should be a list"
f"got '{type(function_declarations)}'"
)
if function_declarations:
fds = [
_format_to_gapic_function_declaration(fd)
for fd in function_declarations
]
gapic_tool.function_declarations.extend(fds)
if "google_search_retrieval" in tool:
gapic_tool.google_search_retrieval = gapic.GoogleSearchRetrieval(
tool["google_search_retrieval"]
)
if "retrieval" in tool:
gapic_tool.retrieval = gapic.Retrieval(tool["retrieval"])
else:
fd = _format_to_gapic_function_declaration(tool)
gapic_tool.function_declarations.append(fd)
return gapic_tool
[docs]class PydanticFunctionsOutputParser(BaseOutputParser):
"""Parse an output as a pydantic object.
This parser is used to parse the output of a ChatModel that uses
Google Vertex function format to invoke functions.
The parser extracts the function call invocation and matches
them to the pydantic schema provided.
An exception will be raised if the function call does not match
the provided schema.
Example:
... code-block:: python
message = AIMessage(
content="This is a test message",
additional_kwargs={
"function_call": {
"name": "cookie",
"arguments": json.dumps({"name": "value", "age": 10}),
}
},
)
chat_generation = ChatGeneration(message=message)
class Cookie(BaseModel):
name: str
age: int
class Dog(BaseModel):
species: str
# Full output
parser = PydanticOutputFunctionsParser(
pydantic_schema={"cookie": Cookie, "dog": Dog}
)
result = parser.parse_result([chat_generation])
"""
pydantic_schema: Union[Type[BaseModel], Dict[str, Type[BaseModel]]]
[docs] def parse_result(
self, result: List[Generation], *, partial: bool = False
) -> BaseModel:
if not isinstance(result[0], ChatGeneration):
raise ValueError("This output parser only works on ChatGeneration output")
message = result[0].message
function_call = message.additional_kwargs.get("function_call", {})
if function_call:
function_name = function_call["name"]
tool_input = function_call.get("arguments", {})
if isinstance(self.pydantic_schema, dict):
schema = self.pydantic_schema[function_name]
else:
schema = self.pydantic_schema
return schema(**json.loads(tool_input))
else:
raise OutputParserException(f"Could not parse function call: {message}")
[docs] def parse(self, text: str) -> BaseModel:
raise ValueError("Can only parse messages")
class _FunctionCallingConfigDict(TypedDict):
mode: Union[gapic.FunctionCallingConfig.Mode, int]
allowed_function_names: Optional[List[str]]
class _ToolConfigDict(TypedDict):
function_calling_config: _FunctionCallingConfigDict
_ToolChoiceType = Union[
dict, List[str], str, Literal["auto", "none", "any"], Literal[True]
]
def _format_tool_config(tool_config: _ToolConfigDict) -> Union[gapic.ToolConfig, None]:
if "function_calling_config" not in tool_config:
raise ValueError(
"Invalid ToolConfig, missing 'function_calling_config' key. Received:\n\n"
f"{tool_config=}"
)
return gapic.ToolConfig(
function_calling_config=gapic.FunctionCallingConfig(
**tool_config["function_calling_config"]
)
)
def _tool_choice_to_tool_config(
tool_choice: _ToolChoiceType,
all_names: List[str],
) -> _ToolConfigDict:
allowed_function_names: Optional[List[str]] = None
if tool_choice is True or tool_choice == "any":
mode = gapic.FunctionCallingConfig.Mode.ANY
allowed_function_names = all_names
elif tool_choice == "auto":
mode = gapic.FunctionCallingConfig.Mode.AUTO
elif tool_choice == "none":
mode = gapic.FunctionCallingConfig.Mode.NONE
elif isinstance(tool_choice, str):
mode = gapic.FunctionCallingConfig.Mode.ANY
allowed_function_names = [tool_choice]
elif isinstance(tool_choice, list):
mode = gapic.FunctionCallingConfig.Mode.ANY
allowed_function_names = tool_choice
elif isinstance(tool_choice, dict):
if "mode" in tool_choice:
mode = tool_choice["mode"]
allowed_function_names = tool_choice.get("allowed_function_names")
elif "function_calling_config" in tool_choice:
mode = tool_choice["function_calling_config"]["mode"]
allowed_function_names = tool_choice["function_calling_config"].get(
"allowed_function_names"
)
else:
raise ValueError(
f"Unrecognized tool choice format:\n\n{tool_choice=}\n\nShould match "
f"VertexAI ToolConfig or FunctionCallingConfig format."
)
else:
raise ValueError(f"Unrecognized tool choice format:\n\n{tool_choice=}")
return _ToolConfigDict(
function_calling_config=_FunctionCallingConfigDict(
mode=mode,
allowed_function_names=allowed_function_names,
)
)