Source code for langchain_mongodb.cache

"""LangChain MongoDB Caches."""

import json
import logging
import time
from importlib.metadata import version
from typing import Any, Callable, Dict, Optional, Union

from langchain_core.caches import RETURN_VAL_TYPE, BaseCache
from langchain_core.embeddings import Embeddings
from langchain_core.load.dump import dumps
from langchain_core.load.load import loads
from langchain_core.outputs import Generation
from pymongo import MongoClient
from pymongo.collection import Collection
from pymongo.database import Database
from pymongo.driver_info import DriverInfo

from langchain_mongodb.vectorstores import MongoDBAtlasVectorSearch

logger = logging.getLogger(__file__)


[docs]class MongoDBCache(BaseCache): """MongoDB Atlas cache A cache that uses MongoDB Atlas as a backend """ PROMPT = "prompt" LLM = "llm" RETURN_VAL = "return_val"
[docs] def __init__( self, connection_string: str, collection_name: str = "default", database_name: str = "default", **kwargs: Dict[str, Any], ) -> None: """ Initialize Atlas Cache. Creates collection on instantiation Args: collection_name (str): Name of collection for cache to live. Defaults to "default". connection_string (str): Connection URI to MongoDB Atlas. Defaults to "default". database_name (str): Name of database for cache to live. Defaults to "default". """ self.client = _generate_mongo_client(connection_string) self.__database_name = database_name self.__collection_name = collection_name if self.__collection_name not in self.database.list_collection_names(): self.database.create_collection(self.__collection_name) # Create an index on key and llm_string self.collection.create_index([self.PROMPT, self.LLM])
@property def database(self) -> Database: """Returns the database used to store cache values.""" return self.client[self.__database_name] @property def collection(self) -> Collection: """Returns the collection used to store cache values.""" return self.database[self.__collection_name]
[docs] def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up based on prompt and llm_string.""" return_doc = ( self.collection.find_one(self._generate_keys(prompt, llm_string)) or {} ) return_val = return_doc.get(self.RETURN_VAL) return _loads_generations(return_val) if return_val else None # type: ignore
[docs] def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None: """Update cache based on prompt and llm_string.""" self.collection.update_one( {**self._generate_keys(prompt, llm_string)}, {"$set": {self.RETURN_VAL: _dumps_generations(return_val)}}, upsert=True, )
def _generate_keys(self, prompt: str, llm_string: str) -> Dict[str, str]: """Create keyed fields for caching layer""" return {self.PROMPT: prompt, self.LLM: llm_string}
[docs] def clear(self, **kwargs: Any) -> None: """Clear cache that can take additional keyword arguments. Any additional arguments will propagate as filtration criteria for what gets deleted. E.g. # Delete only entries that have llm_string as "fake-model" self.clear(llm_string="fake-model") """ self.collection.delete_many({**kwargs})
[docs]class MongoDBAtlasSemanticCache(BaseCache, MongoDBAtlasVectorSearch): """MongoDB Atlas Semantic cache. A Cache backed by a MongoDB Atlas server with vector-store support """ LLM = "llm_string" RETURN_VAL = "return_val"
[docs] def __init__( self, connection_string: str, embedding: Embeddings, collection_name: str = "default", database_name: str = "default", index_name: str = "default", wait_until_ready: Optional[float] = None, score_threshold: Optional[float] = None, **kwargs: Dict[str, Any], ): """ Initialize Atlas VectorSearch Cache. Assumes collection exists before instantiation Args: connection_string (str): MongoDB URI to connect to MongoDB Atlas cluster. embedding (Embeddings): Text embedding model to use. collection_name (str): MongoDB Collection to add the texts to. Defaults to "default". database_name (str): MongoDB Database where to store texts. Defaults to "default". index_name: Name of the Atlas Search index. defaults to 'default' wait_until_ready (float): Wait this time for Atlas to finish indexing the stored text. Defaults to None. """ client = _generate_mongo_client(connection_string) self.collection = client[database_name][collection_name] self.score_threshold = score_threshold self._wait_until_ready = wait_until_ready super().__init__( collection=self.collection, embedding=embedding, index_name=index_name, **kwargs, # type: ignore )
[docs] def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up based on prompt and llm_string.""" post_filter_pipeline = ( [{"$match": {"score": {"$gte": self.score_threshold}}}] if self.score_threshold else None ) search_response = self.similarity_search_with_score( prompt, 1, pre_filter={self.LLM: {"$eq": llm_string}}, post_filter_pipeline=post_filter_pipeline, ) if search_response: return_val = search_response[0][0].metadata.get(self.RETURN_VAL) response = _loads_generations(return_val) or return_val # type: ignore return response return None
[docs] def update( self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE, wait_until_ready: Optional[float] = None, ) -> None: """Update cache based on prompt and llm_string.""" self.add_texts( [prompt], [ { self.LLM: llm_string, self.RETURN_VAL: _dumps_generations(return_val), } ], ) wait = self._wait_until_ready if wait_until_ready is None else wait_until_ready def is_indexed() -> bool: return self.lookup(prompt, llm_string) == return_val if wait: _wait_until(is_indexed, return_val, timeout=wait)
[docs] def clear(self, **kwargs: Any) -> None: """Clear cache that can take additional keyword arguments. Any additional arguments will propagate as filtration criteria for what gets deleted. It will delete any locally cached content regardless E.g. # Delete only entries that have llm_string as "fake-model" self.clear(llm_string="fake-model") """ self.collection.delete_many({**kwargs})
def _generate_mongo_client(connection_string: str) -> MongoClient: return MongoClient( connection_string, driver=DriverInfo(name="Langchain", version=version("langchain-mongodb")), ) def _dumps_generations(generations: RETURN_VAL_TYPE) -> str: """ Serialization for generic RETURN_VAL_TYPE, i.e. sequence of `Generation` Args: generations (RETURN_VAL_TYPE): A list of language model generations. Returns: str: a single string representing a list of generations. This, and "_dumps_generations" are duplicated in this utility from modules: "libs/community/langchain_community/cache.py" This function and its counterpart rely on the dumps/loads pair with Reviver, so are able to deal with all subclasses of Generation. Each item in the list can be `dumps`ed to a string, then we make the whole list of strings into a json-dumped. """ return json.dumps([dumps(_item) for _item in generations]) def _loads_generations(generations_str: str) -> Union[RETURN_VAL_TYPE, None]: """ Deserialization of a string into a generic RETURN_VAL_TYPE (i.e. a sequence of `Generation`). Args: generations_str (str): A string representing a list of generations. Returns: RETURN_VAL_TYPE: A list of generations. This function and its counterpart rely on the dumps/loads pair with Reviver, so are able to deal with all subclasses of Generation. See `_dumps_generations`, the inverse of this function. Compatible with the legacy cache-blob format Does not raise exceptions for malformed entries, just logs a warning and returns none: the caller should be prepared for such a cache miss. """ try: generations = [loads(_item_str) for _item_str in json.loads(generations_str)] return generations except (json.JSONDecodeError, TypeError): # deferring the (soft) handling to after the legacy-format attempt pass try: gen_dicts = json.loads(generations_str) # not relying on `_load_generations_from_json` (which could disappear): generations = [Generation(**generation_dict) for generation_dict in gen_dicts] logger.warning( f"Legacy 'Generation' cached blob encountered: '{generations_str}'" ) return generations except (json.JSONDecodeError, TypeError): logger.warning( f"Malformed/unparsable cached blob encountered: '{generations_str}'" ) return None def _wait_until( predicate: Callable, success_description: Any, timeout: float = 10.0 ) -> None: """Wait up to 10 seconds (by default) for predicate to be true. E.g.: wait_until(lambda: client.primary == ('a', 1), 'connect to the primary') If the lambda-expression isn't true after 10 seconds, we raise AssertionError("Didn't ever connect to the primary"). Returns the predicate's first true value. """ start = time.time() interval = min(float(timeout) / 100, 0.1) while True: retval = predicate() if retval: return retval if time.time() - start > timeout: raise TimeoutError("Didn't ever %s" % success_description) time.sleep(interval)