[docs]classOllamaEmbeddings(BaseModel,Embeddings):"""Ollama embedding model integration. Set up a local Ollama instance: Install the Ollama package and set up a local Ollama instance using the instructions here: https://github.com/ollama/ollama . You will need to choose a model to serve. You can view a list of available models via the model library (https://ollama.com/library). To fetch a model from the Ollama model library use ``ollama pull <name-of-model>``. For example, to pull the llama3 model: .. code-block:: bash ollama pull llama3 This will download the default tagged version of the model. Typically, the default points to the latest, smallest sized-parameter model. * On Mac, the models will be downloaded to ~/.ollama/models * On Linux (or WSL), the models will be stored at /usr/share/ollama/.ollama/models You can specify the exact version of the model of interest as such ``ollama pull vicuna:13b-v1.5-16k-q4_0``. To view pulled models: .. code-block:: bash ollama list To start serving: .. code-block:: bash ollama serve View the Ollama documentation for more commands. .. code-block:: bash ollama help Install the langchain-ollama integration package: .. code-block:: bash pip install -U langchain_ollama Key init args — completion params: model: str Name of Ollama model to use. base_url: Optional[str] Base url the model is hosted under. See full list of supported init args and their descriptions in the params section. Instantiate: .. code-block:: python from langchain_ollama import OllamaEmbeddings embed = OllamaEmbeddings( model="llama3" ) Embed single text: .. code-block:: python input_text = "The meaning of life is 42" vector = embed.embed_query(input_text) print(vector[:3]) .. code-block:: python [-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915] Embed multiple texts: .. code-block:: python input_texts = ["Document 1...", "Document 2..."] vectors = embed.embed_documents(input_texts) print(len(vectors)) # The first 3 coordinates for the first vector print(vectors[0][:3]) .. code-block:: python 2 [-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915] Async: .. code-block:: python vector = await embed.aembed_query(input_text) print(vector[:3]) # multiple: # await embed.aembed_documents(input_texts) .. code-block:: python [-0.009100092574954033, 0.005071679595857859, -0.0029193938244134188] """# noqa: E501model:str"""Model name to use."""base_url:Optional[str]=None"""Base url the model is hosted under."""client_kwargs:Optional[dict]={}"""Additional kwargs to pass to the httpx Client. For a full list of the params, see [this link](https://pydoc.dev/httpx/latest/httpx.Client.html) """_client:Client=Field(default=None)""" The client to use for making requests. """_async_client:AsyncClient=Field(default=None)""" The async client to use for making requests. """classConfig:"""Configuration for this pydantic object."""extra="forbid"@root_validator(pre=False,skip_on_failure=True)def_set_clients(cls,values:dict)->dict:"""Set clients to use for ollama."""values["_client"]=Client(host=values["base_url"],**values["client_kwargs"])values["_async_client"]=AsyncClient(host=values["base_url"],**values["client_kwargs"])returnvalues