from __future__ import annotations
import abc
import json
import os
import re
from pathlib import Path
from typing import Any, Dict, Generic, List, Literal, Optional, Type, TypeVar, Union
import yaml
from pydantic import BaseModel, ConfigDict, Field, FilePath
T = TypeVar("T")
[docs]class SimpleModel(BaseModel, Generic[T]):
"""Simple model for a single item."""
item: T
[docs]class PropertySettings(BaseModel):
"""Property settings for a prompty model."""
model_config = ConfigDict(arbitrary_types_allowed=True)
type: Literal["string", "number", "array", "object", "boolean"]
default: Union[str, int, float, List, Dict, bool] = Field(default=None)
description: str = Field(default="")
[docs]class ModelSettings(BaseModel):
"""Model settings for a prompty model."""
api: str = Field(default="")
configuration: dict = Field(default={})
parameters: dict = Field(default={})
response: dict = Field(default={})
[docs] def model_dump_safe(self) -> dict:
d = self.model_dump()
d["configuration"] = {
k: "*" * len(v) if "key" in k.lower() or "secret" in k.lower() else v
for k, v in d["configuration"].items()
}
return d
[docs]class TemplateSettings(BaseModel):
"""Template settings for a prompty model."""
type: str = Field(default="mustache")
parser: str = Field(default="")
[docs]class Prompty(BaseModel):
"""Base Prompty model."""
# metadata
name: str = Field(default="")
description: str = Field(default="")
authors: List[str] = Field(default=[])
tags: List[str] = Field(default=[])
version: str = Field(default="")
base: str = Field(default="")
basePrompty: Optional[Prompty] = Field(default=None)
# model
model: ModelSettings = Field(default_factory=ModelSettings)
# sample
sample: dict = Field(default={})
# input / output
inputs: Dict[str, PropertySettings] = Field(default={})
outputs: Dict[str, PropertySettings] = Field(default={})
# template
template: TemplateSettings
file: FilePath = Field(default="")
content: str = Field(default="")
[docs] def to_safe_dict(self) -> Dict[str, Any]:
d = {}
for k, v in self:
if v != "" and v != {} and v != [] and v is not None:
if k == "model":
d[k] = v.model_dump_safe()
elif k == "template":
d[k] = v.model_dump()
elif k == "inputs" or k == "outputs":
d[k] = {k: v.model_dump() for k, v in v.items()}
elif k == "file":
d[k] = (
str(self.file.as_posix())
if isinstance(self.file, Path)
else self.file
)
elif k == "basePrompty":
# no need to serialize basePrompty
continue
else:
d[k] = v
return d
# generate json representation of the prompty
[docs] def to_safe_json(self) -> str:
d = self.to_safe_dict()
return json.dumps(d)
[docs] @staticmethod
def normalize(attribute: Any, parent: Path, env_error: bool = True) -> Any:
if isinstance(attribute, str):
attribute = attribute.strip()
if attribute.startswith("${") and attribute.endswith("}"):
variable = attribute[2:-1].split(":")
if variable[0] in os.environ.keys():
return os.environ[variable[0]]
else:
if len(variable) > 1:
return variable[1]
else:
if env_error:
raise ValueError(
f"Variable {variable[0]} not found in environment"
)
else:
return ""
elif (
attribute.startswith("file:")
and Path(parent / attribute.split(":")[1]).exists()
):
with open(parent / attribute.split(":")[1], "r") as f:
items = json.load(f)
if isinstance(items, list):
return [Prompty.normalize(value, parent) for value in items]
elif isinstance(items, dict):
return {
key: Prompty.normalize(value, parent)
for key, value in items.items()
}
else:
return items
else:
return attribute
elif isinstance(attribute, list):
return [Prompty.normalize(value, parent) for value in attribute]
elif isinstance(attribute, dict):
return {
key: Prompty.normalize(value, parent)
for key, value in attribute.items()
}
else:
return attribute
[docs]def param_hoisting(
top: Dict[str, Any], bottom: Dict[str, Any], top_key: Any = None
) -> Dict[str, Any]:
"""Merge two dictionaries with hoisting of parameters from bottom to top.
Args:
top: The top dictionary.
bottom: The bottom dictionary.
top_key: The key to hoist from the bottom to the top.
Returns:
The merged dictionary.
"""
if top_key:
new_dict = {**top[top_key]} if top_key in top else {}
else:
new_dict = {**top}
for key, value in bottom.items():
if key not in new_dict:
new_dict[key] = value
return new_dict
[docs]class Invoker(abc.ABC):
"""Base class for all invokers."""
[docs] def __init__(self, prompty: Prompty) -> None:
self.prompty = prompty
[docs] @abc.abstractmethod
def invoke(self, data: BaseModel) -> BaseModel:
pass
def __call__(self, data: BaseModel) -> BaseModel:
return self.invoke(data)
[docs]class NoOpParser(Invoker):
"""NoOp parser for invokers."""
[docs] def invoke(self, data: BaseModel) -> BaseModel:
return data
[docs]class InvokerFactory(object):
"""Factory for creating invokers."""
_instance = None
_renderers: Dict[str, Type[Invoker]] = {}
_parsers: Dict[str, Type[Invoker]] = {}
_executors: Dict[str, Type[Invoker]] = {}
_processors: Dict[str, Type[Invoker]] = {}
def __new__(cls) -> InvokerFactory:
if cls._instance is None:
cls._instance = super(InvokerFactory, cls).__new__(cls)
# Add NOOP invokers
cls._renderers["NOOP"] = NoOpParser
cls._parsers["NOOP"] = NoOpParser
cls._executors["NOOP"] = NoOpParser
cls._processors["NOOP"] = NoOpParser
return cls._instance
[docs] def register(
self,
type: Literal["renderer", "parser", "executor", "processor"],
name: str,
invoker: Type[Invoker],
) -> None:
if type == "renderer":
self._renderers[name] = invoker
elif type == "parser":
self._parsers[name] = invoker
elif type == "executor":
self._executors[name] = invoker
elif type == "processor":
self._processors[name] = invoker
else:
raise ValueError(f"Invalid type {type}")
[docs] def register_renderer(self, name: str, renderer_class: Any) -> None:
self.register("renderer", name, renderer_class)
[docs] def register_parser(self, name: str, parser_class: Any) -> None:
self.register("parser", name, parser_class)
[docs] def register_executor(self, name: str, executor_class: Any) -> None:
self.register("executor", name, executor_class)
[docs] def register_processor(self, name: str, processor_class: Any) -> None:
self.register("processor", name, processor_class)
def __call__(
self,
type: Literal["renderer", "parser", "executor", "processor"],
name: str,
prompty: Prompty,
data: BaseModel,
) -> Any:
if type == "renderer":
return self._renderers[name](prompty)(data)
elif type == "parser":
return self._parsers[name](prompty)(data)
elif type == "executor":
return self._executors[name](prompty)(data)
elif type == "processor":
return self._processors[name](prompty)(data)
else:
raise ValueError(f"Invalid type {type}")
[docs] def to_dict(self) -> Dict[str, Any]:
return {
"renderers": {
k: f"{v.__module__}.{v.__name__}" for k, v in self._renderers.items()
},
"parsers": {
k: f"{v.__module__}.{v.__name__}" for k, v in self._parsers.items()
},
"executors": {
k: f"{v.__module__}.{v.__name__}" for k, v in self._executors.items()
},
"processors": {
k: f"{v.__module__}.{v.__name__}" for k, v in self._processors.items()
},
}
[docs] def to_json(self) -> str:
return json.dumps(self.to_dict())
[docs]class Frontmatter:
"""Class for reading frontmatter from a string or file."""
_yaml_delim = r"(?:---|\+\+\+)"
_yaml = r"(.*?)"
_content = r"\s*(.+)$"
_re_pattern = r"^\s*" + _yaml_delim + _yaml + _yaml_delim + _content
_regex = re.compile(_re_pattern, re.S | re.M)
[docs] @classmethod
def read_file(cls, path: str) -> dict[str, Any]:
"""Reads file at path and returns dict with separated frontmatter.
See read() for more info on dict return value.
"""
with open(path, encoding="utf-8") as file:
file_contents = file.read()
return cls.read(file_contents)
[docs] @classmethod
def read(cls, string: str) -> dict[str, Any]:
"""Returns dict with separated frontmatter from string.
Returned dict keys:
attributes -- extracted YAML attributes in dict form.
body -- string contents below the YAML separators
frontmatter -- string representation of YAML
"""
fmatter = ""
body = ""
result = cls._regex.search(string)
if result:
fmatter = result.group(1)
body = result.group(2)
return {
"attributes": yaml.load(fmatter, Loader=yaml.FullLoader),
"body": body,
"frontmatter": fmatter,
}