[docs]classQdrantException(Exception):"""`Qdrant` related exceptions."""
[docs]defsync_call_fallback(method:Callable)->Callable:""" Decorator to call the synchronous method of the class if the async method is not implemented. This decorator might be only used for the methods that are defined as async in the class. """@functools.wraps(method)asyncdefwrapper(self:Any,*args:Any,**kwargs:Any)->Any:try:returnawaitmethod(self,*args,**kwargs)exceptNotImplementedError:# If the async method is not implemented, call the synchronous method# by removing the first letter from the method name. For example,# if the async method is called ``aaad_texts``, the synchronous method# will be called ``aad_texts``.returnawaitrun_in_executor(None,getattr(self,method.__name__[1:]),*args,**kwargs)returnwrapper
[docs]def__init__(self,client:Any,collection_name:str,embeddings:Optional[Embeddings]=None,content_payload_key:str=CONTENT_KEY,metadata_payload_key:str=METADATA_KEY,distance_strategy:str="COSINE",vector_name:Optional[str]=VECTOR_NAME,async_client:Optional[Any]=None,embedding_function:Optional[Callable]=None,# deprecated):"""Initialize with necessary components."""ifnotisinstance(client,QdrantClient):raiseValueError(f"client should be an instance of qdrant_client.QdrantClient, "f"got {type(client)}")ifasync_clientisnotNoneandnotisinstance(async_client,AsyncQdrantClient):raiseValueError(f"async_client should be an instance of qdrant_client.AsyncQdrantClient"f"got {type(async_client)}")ifembeddingsisNoneandembedding_functionisNone:raiseValueError("`embeddings` value can't be None. Pass `Embeddings` instance.")ifembeddingsisnotNoneandembedding_functionisnotNone:raiseValueError("Both `embeddings` and `embedding_function` are passed. ""Use `embeddings` only.")self._embeddings=embeddingsself._embeddings_function=embedding_functionself.client:QdrantClient=clientself.async_client:Optional[AsyncQdrantClient]=async_clientself.collection_name=collection_nameself.content_payload_key=content_payload_keyorself.CONTENT_KEYself.metadata_payload_key=metadata_payload_keyorself.METADATA_KEYself.vector_name=vector_nameorself.VECTOR_NAMEifembedding_functionisnotNone:warnings.warn("Using `embedding_function` is deprecated. ""Pass `Embeddings` instance to `embeddings` instead.")ifnotisinstance(embeddings,Embeddings):warnings.warn("`embeddings` should be an instance of `Embeddings`.""Using `embeddings` as `embedding_function` which is deprecated")self._embeddings_function=embeddingsself._embeddings=Noneself.distance_strategy=distance_strategy.upper()
[docs]defadd_texts(self,texts:Iterable[str],metadatas:Optional[List[dict]]=None,ids:Optional[Sequence[str]]=None,batch_size:int=64,**kwargs:Any,)->List[str]:"""Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. Ids have to be uuid-like strings. batch_size: How many vectors upload per-request. Default: 64 Returns: List of ids from adding the texts into the vectorstore. """added_ids=[]forbatch_ids,pointsinself._generate_rest_batches(texts,metadatas,ids,batch_size):self.client.upsert(collection_name=self.collection_name,points=points,**kwargs)added_ids.extend(batch_ids)returnadded_ids
[docs]@sync_call_fallbackasyncdefaadd_texts(self,texts:Iterable[str],metadatas:Optional[List[dict]]=None,ids:Optional[Sequence[str]]=None,batch_size:int=64,**kwargs:Any,)->List[str]:"""Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. Ids have to be uuid-like strings. batch_size: How many vectors upload per-request. Default: 64 Returns: List of ids from adding the texts into the vectorstore. """ifself.async_clientisNoneorisinstance(self.async_client._client,AsyncQdrantLocal):raiseNotImplementedError("QdrantLocal cannot interoperate with sync and async clients")added_ids=[]asyncforbatch_ids,pointsinself._agenerate_rest_batches(texts,metadatas,ids,batch_size):awaitself.async_client.upsert(collection_name=self.collection_name,points=points,**kwargs)added_ids.extend(batch_ids)returnadded_ids
[docs]defsimilarity_search(self,query:str,k:int=4,filter:Optional[MetadataFilter]=None,search_params:Optional[models.SearchParams]=None,offset:int=0,score_threshold:Optional[float]=None,consistency:Optional[models.ReadConsistency]=None,**kwargs:Any,)->List[Document]:"""Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. search_params: Additional search params offset: Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to QdrantClient.search() Returns: List of Documents most similar to the query. """results=self.similarity_search_with_score(query,k,filter=filter,search_params=search_params,offset=offset,score_threshold=score_threshold,consistency=consistency,**kwargs,)returnlist(map(itemgetter(0),results))
[docs]@sync_call_fallbackasyncdefasimilarity_search(self,query:str,k:int=4,filter:Optional[MetadataFilter]=None,**kwargs:Any,)->List[Document]:"""Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query. """results=awaitself.asimilarity_search_with_score(query,k,filter,**kwargs)returnlist(map(itemgetter(0),results))
[docs]defsimilarity_search_with_score(self,query:str,k:int=4,filter:Optional[MetadataFilter]=None,search_params:Optional[models.SearchParams]=None,offset:int=0,score_threshold:Optional[float]=None,consistency:Optional[models.ReadConsistency]=None,**kwargs:Any,)->List[Tuple[Document,float]]:"""Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. search_params: Additional search params offset: Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to QdrantClient.search() Returns: List of documents most similar to the query text and distance for each. """returnself.similarity_search_with_score_by_vector(self._embed_query(query),k,filter=filter,search_params=search_params,offset=offset,score_threshold=score_threshold,consistency=consistency,**kwargs,)
[docs]@sync_call_fallbackasyncdefasimilarity_search_with_score(self,query:str,k:int=4,filter:Optional[MetadataFilter]=None,search_params:Optional[models.SearchParams]=None,offset:int=0,score_threshold:Optional[float]=None,consistency:Optional[models.ReadConsistency]=None,**kwargs:Any,)->List[Tuple[Document,float]]:"""Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. search_params: Additional search params offset: Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to AsyncQdrantClient.Search(). Returns: List of documents most similar to the query text and distance for each. """query_embedding=awaitself._aembed_query(query)returnawaitself.asimilarity_search_with_score_by_vector(query_embedding,k,filter=filter,search_params=search_params,offset=offset,score_threshold=score_threshold,consistency=consistency,**kwargs,)
[docs]defsimilarity_search_by_vector(self,embedding:List[float],k:int=4,filter:Optional[MetadataFilter]=None,search_params:Optional[models.SearchParams]=None,offset:int=0,score_threshold:Optional[float]=None,consistency:Optional[models.ReadConsistency]=None,**kwargs:Any,)->List[Document]:"""Return docs most similar to embedding vector. Args: embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. search_params: Additional search params offset: Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to QdrantClient.search() Returns: List of Documents most similar to the query. """results=self.similarity_search_with_score_by_vector(embedding,k,filter=filter,search_params=search_params,offset=offset,score_threshold=score_threshold,consistency=consistency,**kwargs,)returnlist(map(itemgetter(0),results))
[docs]@sync_call_fallbackasyncdefasimilarity_search_by_vector(self,embedding:List[float],k:int=4,filter:Optional[MetadataFilter]=None,search_params:Optional[models.SearchParams]=None,offset:int=0,score_threshold:Optional[float]=None,consistency:Optional[models.ReadConsistency]=None,**kwargs:Any,)->List[Document]:"""Return docs most similar to embedding vector. Args: embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. search_params: Additional search params offset: Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to AsyncQdrantClient.Search(). Returns: List of Documents most similar to the query. """results=awaitself.asimilarity_search_with_score_by_vector(embedding,k,filter=filter,search_params=search_params,offset=offset,score_threshold=score_threshold,consistency=consistency,**kwargs,)returnlist(map(itemgetter(0),results))
[docs]defsimilarity_search_with_score_by_vector(self,embedding:List[float],k:int=4,filter:Optional[MetadataFilter]=None,search_params:Optional[models.SearchParams]=None,offset:int=0,score_threshold:Optional[float]=None,consistency:Optional[models.ReadConsistency]=None,**kwargs:Any,)->List[Tuple[Document,float]]:"""Return docs most similar to embedding vector. Args: embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. search_params: Additional search params offset: Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to QdrantClient.search() Returns: List of documents most similar to the query text and distance for each. """iffilterisnotNoneandisinstance(filter,dict):warnings.warn("Using dict as a `filter` is deprecated. Please use qdrant-client ""filters directly: ""https://qdrant.tech/documentation/concepts/filtering/",DeprecationWarning,)qdrant_filter=self._qdrant_filter_from_dict(filter)else:qdrant_filter=filterquery_vector=embeddingifself.vector_nameisnotNone:query_vector=(self.vector_name,embedding)# type: ignore[assignment]results=self.client.search(collection_name=self.collection_name,query_vector=query_vector,query_filter=qdrant_filter,search_params=search_params,limit=k,offset=offset,with_payload=True,with_vectors=False,# Langchain does not expect vectors to be returnedscore_threshold=score_threshold,consistency=consistency,**kwargs,)return[(self._document_from_scored_point(result,self.collection_name,self.content_payload_key,self.metadata_payload_key,),result.score,)forresultinresults]
[docs]@sync_call_fallbackasyncdefasimilarity_search_with_score_by_vector(self,embedding:List[float],k:int=4,filter:Optional[MetadataFilter]=None,search_params:Optional[models.SearchParams]=None,offset:int=0,score_threshold:Optional[float]=None,consistency:Optional[models.ReadConsistency]=None,**kwargs:Any,)->List[Tuple[Document,float]]:"""Return docs most similar to embedding vector. Args: embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. search_params: Additional search params offset: Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to AsyncQdrantClient.Search(). Returns: List of documents most similar to the query text and distance for each. """ifself.async_clientisNoneorisinstance(self.async_client._client,AsyncQdrantLocal):raiseNotImplementedError("QdrantLocal cannot interoperate with sync and async clients")iffilterisnotNoneandisinstance(filter,dict):warnings.warn("Using dict as a `filter` is deprecated. Please use qdrant-client ""filters directly: ""https://qdrant.tech/documentation/concepts/filtering/",DeprecationWarning,)qdrant_filter=self._qdrant_filter_from_dict(filter)else:qdrant_filter=filterquery_vector=embeddingifself.vector_nameisnotNone:query_vector=(self.vector_name,embedding)# type: ignore[assignment]results=awaitself.async_client.search(collection_name=self.collection_name,query_vector=query_vector,query_filter=qdrant_filter,search_params=search_params,limit=k,offset=offset,with_payload=True,with_vectors=False,# Langchain does not expect vectors to be returnedscore_threshold=score_threshold,consistency=consistency,**kwargs,)return[(self._document_from_scored_point(result,self.collection_name,self.content_payload_key,self.metadata_payload_key,),result.score,)forresultinresults]
[docs]defmax_marginal_relevance_search(self,query:str,k:int=4,fetch_k:int=20,lambda_mult:float=0.5,filter:Optional[MetadataFilter]=None,search_params:Optional[models.SearchParams]=None,score_threshold:Optional[float]=None,consistency:Optional[models.ReadConsistency]=None,**kwargs:Any,)->List[Document]:"""Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter: Filter by metadata. Defaults to None. search_params: Additional search params score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to QdrantClient.search() Returns: List of Documents selected by maximal marginal relevance. """query_embedding=self._embed_query(query)returnself.max_marginal_relevance_search_by_vector(query_embedding,k=k,fetch_k=fetch_k,lambda_mult=lambda_mult,filter=filter,search_params=search_params,score_threshold=score_threshold,consistency=consistency,**kwargs,)
[docs]@sync_call_fallbackasyncdefamax_marginal_relevance_search(self,query:str,k:int=4,fetch_k:int=20,lambda_mult:float=0.5,filter:Optional[MetadataFilter]=None,search_params:Optional[models.SearchParams]=None,score_threshold:Optional[float]=None,consistency:Optional[models.ReadConsistency]=None,**kwargs:Any,)->List[Document]:"""Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter: Filter by metadata. Defaults to None. search_params: Additional search params score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to AsyncQdrantClient.Search(). Returns: List of Documents selected by maximal marginal relevance. """query_embedding=awaitself._aembed_query(query)returnawaitself.amax_marginal_relevance_search_by_vector(query_embedding,k=k,fetch_k=fetch_k,lambda_mult=lambda_mult,filter=filter,search_params=search_params,score_threshold=score_threshold,consistency=consistency,**kwargs,)
[docs]defmax_marginal_relevance_search_by_vector(self,embedding:List[float],k:int=4,fetch_k:int=20,lambda_mult:float=0.5,filter:Optional[MetadataFilter]=None,search_params:Optional[models.SearchParams]=None,score_threshold:Optional[float]=None,consistency:Optional[models.ReadConsistency]=None,**kwargs:Any,)->List[Document]:"""Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter: Filter by metadata. Defaults to None. search_params: Additional search params score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to QdrantClient.search() Returns: List of Documents selected by maximal marginal relevance. """results=self.max_marginal_relevance_search_with_score_by_vector(embedding,k=k,fetch_k=fetch_k,lambda_mult=lambda_mult,filter=filter,search_params=search_params,score_threshold=score_threshold,consistency=consistency,**kwargs,)returnlist(map(itemgetter(0),results))
[docs]@sync_call_fallbackasyncdefamax_marginal_relevance_search_by_vector(self,embedding:List[float],k:int=4,fetch_k:int=20,lambda_mult:float=0.5,filter:Optional[MetadataFilter]=None,search_params:Optional[models.SearchParams]=None,score_threshold:Optional[float]=None,consistency:Optional[models.ReadConsistency]=None,**kwargs:Any,)->List[Document]:"""Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter: Filter by metadata. Defaults to None. search_params: Additional search params score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to AsyncQdrantClient.Search(). Returns: List of Documents selected by maximal marginal relevance and distance for each. """results=awaitself.amax_marginal_relevance_search_with_score_by_vector(embedding,k=k,fetch_k=fetch_k,lambda_mult=lambda_mult,filter=filter,search_params=search_params,score_threshold=score_threshold,consistency=consistency,**kwargs,)returnlist(map(itemgetter(0),results))
[docs]defmax_marginal_relevance_search_with_score_by_vector(self,embedding:List[float],k:int=4,fetch_k:int=20,lambda_mult:float=0.5,filter:Optional[MetadataFilter]=None,search_params:Optional[models.SearchParams]=None,score_threshold:Optional[float]=None,consistency:Optional[models.ReadConsistency]=None,**kwargs:Any,)->List[Tuple[Document,float]]:"""Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter: Filter by metadata. Defaults to None. search_params: Additional search params score_threshold: Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency: Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas - 'majority' - query all replicas, but return values present in the majority of replicas - 'quorum' - query the majority of replicas, return values present in all of them - 'all' - query all replicas, and return values present in all replicas **kwargs: Any other named arguments to pass through to QdrantClient.search() Returns: List of Documents selected by maximal marginal relevance and distance for each. """query_vector=embeddingifself.vector_nameisnotNone:query_vector=(self.vector_name,query_vector)# type: ignore[assignment]results=self.client.search(collection_name=self.collection_name,query_vector=query_vector,query_filter=filter,search_params=search_params,limit=fetch_k,with_payload=True,with_vectors=True,score_threshold=score_threshold,consistency=consistency,**kwargs,)embeddings=[result.vector.get(self.vector_name)# type: ignore[index, union-attr]ifself.vector_nameisnotNoneelseresult.vectorforresultinresults]mmr_selected=maximal_marginal_relevance(np.array(embedding),embeddings,k=k,lambda_mult=lambda_mult)return[(self._document_from_scored_point(results[i],self.collection_name,self.content_payload_key,self.metadata_payload_key,),results[i].score,)foriinmmr_selected]
[docs]@sync_call_fallbackasyncdefamax_marginal_relevance_search_with_score_by_vector(self,embedding:List[float],k:int=4,fetch_k:int=20,lambda_mult:float=0.5,filter:Optional[MetadataFilter]=None,search_params:Optional[models.SearchParams]=None,score_threshold:Optional[float]=None,consistency:Optional[models.ReadConsistency]=None,**kwargs:Any,)->List[Tuple[Document,float]]:"""Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance and distance for each. """ifself.async_clientisNoneorisinstance(self.async_client._client,AsyncQdrantLocal):raiseNotImplementedError("QdrantLocal cannot interoperate with sync and async clients")query_vector=embeddingifself.vector_nameisnotNone:query_vector=(self.vector_name,query_vector)# type: ignore[assignment]results=awaitself.async_client.search(collection_name=self.collection_name,query_vector=query_vector,query_filter=filter,search_params=search_params,limit=fetch_k,with_payload=True,with_vectors=True,score_threshold=score_threshold,consistency=consistency,**kwargs,)embeddings=[result.vector.get(self.vector_name)# type: ignore[index, union-attr]ifself.vector_nameisnotNoneelseresult.vectorforresultinresults]mmr_selected=maximal_marginal_relevance(np.array(embedding),embeddings,k=k,lambda_mult=lambda_mult)return[(self._document_from_scored_point(results[i],self.collection_name,self.content_payload_key,self.metadata_payload_key,),results[i].score,)foriinmmr_selected]
[docs]defdelete(self,ids:Optional[List[str]]=None,**kwargs:Any)->Optional[bool]:"""Delete by vector ID or other criteria. Args: ids: List of ids to delete. **kwargs: Other keyword arguments that subclasses might use. Returns: True if deletion is successful, False otherwise. """result=self.client.delete(collection_name=self.collection_name,points_selector=ids,)returnresult.status==models.UpdateStatus.COMPLETED
[docs]@sync_call_fallbackasyncdefadelete(self,ids:Optional[List[str]]=None,**kwargs:Any)->Optional[bool]:"""Delete by vector ID or other criteria. Args: ids: List of ids to delete. **kwargs: Other keyword arguments that subclasses might use. Returns: True if deletion is successful, False otherwise. """ifself.async_clientisNoneorisinstance(self.async_client._client,AsyncQdrantLocal):raiseNotImplementedError("QdrantLocal cannot interoperate with sync and async clients")result=awaitself.async_client.delete(collection_name=self.collection_name,points_selector=ids,)returnresult.status==models.UpdateStatus.COMPLETED
[docs]@classmethoddeffrom_texts(cls:Type[Qdrant],texts:List[str],embedding:Embeddings,metadatas:Optional[List[dict]]=None,ids:Optional[Sequence[str]]=None,location:Optional[str]=None,url:Optional[str]=None,port:Optional[int]=6333,grpc_port:int=6334,prefer_grpc:bool=False,https:Optional[bool]=None,api_key:Optional[str]=None,prefix:Optional[str]=None,timeout:Optional[int]=None,host:Optional[str]=None,path:Optional[str]=None,collection_name:Optional[str]=None,distance_func:str="Cosine",content_payload_key:str=CONTENT_KEY,metadata_payload_key:str=METADATA_KEY,vector_name:Optional[str]=VECTOR_NAME,batch_size:int=64,shard_number:Optional[int]=None,replication_factor:Optional[int]=None,write_consistency_factor:Optional[int]=None,on_disk_payload:Optional[bool]=None,hnsw_config:Optional[models.HnswConfigDiff]=None,optimizers_config:Optional[models.OptimizersConfigDiff]=None,wal_config:Optional[models.WalConfigDiff]=None,quantization_config:Optional[models.QuantizationConfig]=None,init_from:Optional[models.InitFrom]=None,on_disk:Optional[bool]=None,force_recreate:bool=False,**kwargs:Any,)->Qdrant:"""Construct Qdrant wrapper from a list of texts. Args: texts: A list of texts to be indexed in Qdrant. embedding: A subclass of `Embeddings`, responsible for text vectorization. metadatas: An optional list of metadata. If provided it has to be of the same length as a list of texts. ids: Optional list of ids to associate with the texts. Ids have to be uuid-like strings. location: If ':memory:' - use in-memory Qdrant instance. If `str` - use it as a `url` parameter. If `None` - fallback to relying on `host` and `port` parameters. url: either host or str of "Optional[scheme], host, Optional[port], Optional[prefix]". Default: `None` port: Port of the REST API interface. Default: 6333 grpc_port: Port of the gRPC interface. Default: 6334 prefer_grpc: If true - use gPRC interface whenever possible in custom methods. Default: False https: If true - use HTTPS(SSL) protocol. Default: None api_key: API key for authentication in Qdrant Cloud. Default: None Can also be set via environment variable `QDRANT_API_KEY`. prefix: If not None - add prefix to the REST URL path. Example: service/v1 will result in http://localhost:6333/service/v1/{qdrant-endpoint} for REST API. Default: None timeout: Timeout for REST and gRPC API requests. Default: 5.0 seconds for REST and unlimited for gRPC host: Host name of Qdrant service. If url and host are None, set to 'localhost'. Default: None path: Path in which the vectors will be stored while using local mode. Default: None collection_name: Name of the Qdrant collection to be used. If not provided, it will be created randomly. Default: None distance_func: Distance function. One of: "Cosine" / "Euclid" / "Dot". Default: "Cosine" content_payload_key: A payload key used to store the content of the document. Default: "page_content" metadata_payload_key: A payload key used to store the metadata of the document. Default: "metadata" vector_name: Name of the vector to be used internally in Qdrant. Default: None batch_size: How many vectors upload per-request. Default: 64 shard_number: Number of shards in collection. Default is 1, minimum is 1. replication_factor: Replication factor for collection. Default is 1, minimum is 1. Defines how many copies of each shard will be created. Have effect only in distributed mode. write_consistency_factor: Write consistency factor for collection. Default is 1, minimum is 1. Defines how many replicas should apply the operation for us to consider it successful. Increasing this number will make the collection more resilient to inconsistencies, but will also make it fail if not enough replicas are available. Does not have any performance impact. Have effect only in distributed mode. on_disk_payload: If true - point`s payload will not be stored in memory. It will be read from the disk every time it is requested. This setting saves RAM by (slightly) increasing the response time. Note: those payload values that are involved in filtering and are indexed - remain in RAM. hnsw_config: Params for HNSW index optimizers_config: Params for optimizer wal_config: Params for Write-Ahead-Log quantization_config: Params for quantization, if None - quantization will be disabled init_from: Use data stored in another collection to initialize this collection force_recreate: Force recreating the collection **kwargs: Additional arguments passed directly into REST client initialization This is a user-friendly interface that: 1. Creates embeddings, one for each text 2. Initializes the Qdrant database as an in-memory docstore by default (and overridable to a remote docstore) 3. Adds the text embeddings to the Qdrant database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain_qdrant import Qdrant from langchain_openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() qdrant = Qdrant.from_texts(texts, embeddings, "localhost") """qdrant=cls.construct_instance(texts,embedding,location,url,port,grpc_port,prefer_grpc,https,api_key,prefix,timeout,host,path,collection_name,distance_func,content_payload_key,metadata_payload_key,vector_name,shard_number,replication_factor,write_consistency_factor,on_disk_payload,hnsw_config,optimizers_config,wal_config,quantization_config,init_from,on_disk,force_recreate,**kwargs,)qdrant.add_texts(texts,metadatas,ids,batch_size)returnqdrant
[docs]@classmethoddeffrom_existing_collection(cls:Type[Qdrant],embedding:Embeddings,path:Optional[str]=None,collection_name:Optional[str]=None,location:Optional[str]=None,url:Optional[str]=None,port:Optional[int]=6333,grpc_port:int=6334,prefer_grpc:bool=False,https:Optional[bool]=None,api_key:Optional[str]=None,prefix:Optional[str]=None,timeout:Optional[int]=None,host:Optional[str]=None,content_payload_key:str=CONTENT_KEY,metadata_payload_key:str=METADATA_KEY,distance_strategy:str="COSINE",vector_name:Optional[str]=VECTOR_NAME,**kwargs:Any,)->Qdrant:""" Get instance of an existing Qdrant collection. This method will return the instance of the store without inserting any new embeddings """ifcollection_nameisNone:raiseValueError("Must specify collection_name. Received None.")client,async_client=cls._generate_clients(location=location,url=url,port=port,grpc_port=grpc_port,prefer_grpc=prefer_grpc,https=https,api_key=api_key,prefix=prefix,timeout=timeout,host=host,path=path,**kwargs,)returncls(client=client,async_client=async_client,collection_name=collection_name,embeddings=embedding,content_payload_key=content_payload_key,metadata_payload_key=metadata_payload_key,distance_strategy=distance_strategy,vector_name=vector_name,)
[docs]@classmethod@sync_call_fallbackasyncdefafrom_texts(cls:Type[Qdrant],texts:List[str],embedding:Embeddings,metadatas:Optional[List[dict]]=None,ids:Optional[Sequence[str]]=None,location:Optional[str]=None,url:Optional[str]=None,port:Optional[int]=6333,grpc_port:int=6334,prefer_grpc:bool=False,https:Optional[bool]=None,api_key:Optional[str]=None,prefix:Optional[str]=None,timeout:Optional[int]=None,host:Optional[str]=None,path:Optional[str]=None,collection_name:Optional[str]=None,distance_func:str="Cosine",content_payload_key:str=CONTENT_KEY,metadata_payload_key:str=METADATA_KEY,vector_name:Optional[str]=VECTOR_NAME,batch_size:int=64,shard_number:Optional[int]=None,replication_factor:Optional[int]=None,write_consistency_factor:Optional[int]=None,on_disk_payload:Optional[bool]=None,hnsw_config:Optional[models.HnswConfigDiff]=None,optimizers_config:Optional[models.OptimizersConfigDiff]=None,wal_config:Optional[models.WalConfigDiff]=None,quantization_config:Optional[models.QuantizationConfig]=None,init_from:Optional[models.InitFrom]=None,on_disk:Optional[bool]=None,force_recreate:bool=False,**kwargs:Any,)->Qdrant:"""Construct Qdrant wrapper from a list of texts. Args: texts: A list of texts to be indexed in Qdrant. embedding: A subclass of `Embeddings`, responsible for text vectorization. metadatas: An optional list of metadata. If provided it has to be of the same length as a list of texts. ids: Optional list of ids to associate with the texts. Ids have to be uuid-like strings. location: If ':memory:' - use in-memory Qdrant instance. If `str` - use it as a `url` parameter. If `None` - fallback to relying on `host` and `port` parameters. url: either host or str of "Optional[scheme], host, Optional[port], Optional[prefix]". Default: `None` port: Port of the REST API interface. Default: 6333 grpc_port: Port of the gRPC interface. Default: 6334 prefer_grpc: If true - use gPRC interface whenever possible in custom methods. Default: False https: If true - use HTTPS(SSL) protocol. Default: None api_key: API key for authentication in Qdrant Cloud. Default: None Can also be set via environment variable `QDRANT_API_KEY`. prefix: If not None - add prefix to the REST URL path. Example: service/v1 will result in http://localhost:6333/service/v1/{qdrant-endpoint} for REST API. Default: None timeout: Timeout for REST and gRPC API requests. Default: 5.0 seconds for REST and unlimited for gRPC host: Host name of Qdrant service. If url and host are None, set to 'localhost'. Default: None path: Path in which the vectors will be stored while using local mode. Default: None collection_name: Name of the Qdrant collection to be used. If not provided, it will be created randomly. Default: None distance_func: Distance function. One of: "Cosine" / "Euclid" / "Dot". Default: "Cosine" content_payload_key: A payload key used to store the content of the document. Default: "page_content" metadata_payload_key: A payload key used to store the metadata of the document. Default: "metadata" vector_name: Name of the vector to be used internally in Qdrant. Default: None batch_size: How many vectors upload per-request. Default: 64 shard_number: Number of shards in collection. Default is 1, minimum is 1. replication_factor: Replication factor for collection. Default is 1, minimum is 1. Defines how many copies of each shard will be created. Have effect only in distributed mode. write_consistency_factor: Write consistency factor for collection. Default is 1, minimum is 1. Defines how many replicas should apply the operation for us to consider it successful. Increasing this number will make the collection more resilient to inconsistencies, but will also make it fail if not enough replicas are available. Does not have any performance impact. Have effect only in distributed mode. on_disk_payload: If true - point`s payload will not be stored in memory. It will be read from the disk every time it is requested. This setting saves RAM by (slightly) increasing the response time. Note: those payload values that are involved in filtering and are indexed - remain in RAM. hnsw_config: Params for HNSW index optimizers_config: Params for optimizer wal_config: Params for Write-Ahead-Log quantization_config: Params for quantization, if None - quantization will be disabled init_from: Use data stored in another collection to initialize this collection force_recreate: Force recreating the collection **kwargs: Additional arguments passed directly into REST client initialization This is a user-friendly interface that: 1. Creates embeddings, one for each text 2. Initializes the Qdrant database as an in-memory docstore by default (and overridable to a remote docstore) 3. Adds the text embeddings to the Qdrant database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain_qdrant import Qdrant from langchain_openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() qdrant = await Qdrant.afrom_texts(texts, embeddings, "localhost") """qdrant=awaitcls.aconstruct_instance(texts,embedding,location,url,port,grpc_port,prefer_grpc,https,api_key,prefix,timeout,host,path,collection_name,distance_func,content_payload_key,metadata_payload_key,vector_name,shard_number,replication_factor,write_consistency_factor,on_disk_payload,hnsw_config,optimizers_config,wal_config,quantization_config,init_from,on_disk,force_recreate,**kwargs,)awaitqdrant.aadd_texts(texts,metadatas,ids,batch_size)returnqdrant
[docs]@classmethoddefconstruct_instance(cls:Type[Qdrant],texts:List[str],embedding:Embeddings,location:Optional[str]=None,url:Optional[str]=None,port:Optional[int]=6333,grpc_port:int=6334,prefer_grpc:bool=False,https:Optional[bool]=None,api_key:Optional[str]=None,prefix:Optional[str]=None,timeout:Optional[int]=None,host:Optional[str]=None,path:Optional[str]=None,collection_name:Optional[str]=None,distance_func:str="Cosine",content_payload_key:str=CONTENT_KEY,metadata_payload_key:str=METADATA_KEY,vector_name:Optional[str]=VECTOR_NAME,shard_number:Optional[int]=None,replication_factor:Optional[int]=None,write_consistency_factor:Optional[int]=None,on_disk_payload:Optional[bool]=None,hnsw_config:Optional[models.HnswConfigDiff]=None,optimizers_config:Optional[models.OptimizersConfigDiff]=None,wal_config:Optional[models.WalConfigDiff]=None,quantization_config:Optional[models.QuantizationConfig]=None,init_from:Optional[models.InitFrom]=None,on_disk:Optional[bool]=None,force_recreate:bool=False,**kwargs:Any,)->Qdrant:# Just do a single quick embedding to get vector sizepartial_embeddings=embedding.embed_documents(texts[:1])vector_size=len(partial_embeddings[0])collection_name=collection_nameoruuid.uuid4().hexdistance_func=distance_func.upper()client,async_client=cls._generate_clients(location=location,url=url,port=port,grpc_port=grpc_port,prefer_grpc=prefer_grpc,https=https,api_key=api_key,prefix=prefix,timeout=timeout,host=host,path=path,**kwargs,)collection_exists=client.collection_exists(collection_name)ifcollection_existsandforce_recreate:client.delete_collection(collection_name)collection_exists=Falseifcollection_exists:# Get the vector configuration of the existing collection and vector, if it# was specified. If the old configuration does not match the current one,# an exception is raised.collection_info=client.get_collection(collection_name=collection_name)current_vector_config=collection_info.config.params.vectorsifisinstance(current_vector_config,dict)andvector_nameisnotNone:ifvector_namenotincurrent_vector_config:raiseQdrantException(f"Existing Qdrant collection {collection_name} does not "f"contain vector named {vector_name}. Did you mean one of the "f"existing vectors: {', '.join(current_vector_config.keys())}? "f"If you want to recreate the collection, set `force_recreate` "f"parameter to `True`.")current_vector_config=current_vector_config.get(vector_name)# type: ignore[assignment]elifisinstance(current_vector_config,dict)andvector_nameisNone:raiseQdrantException(f"Existing Qdrant collection {collection_name} uses named vectors. "f"If you want to reuse it, please set `vector_name` to any of the "f"existing named vectors: "f"{', '.join(current_vector_config.keys())}."f"If you want to recreate the collection, set `force_recreate` "f"parameter to `True`.")elif(notisinstance(current_vector_config,dict)andvector_nameisnotNone):raiseQdrantException(f"Existing Qdrant collection {collection_name} doesn't use named "f"vectors. If you want to reuse it, please set `vector_name` to "f"`None`. If you want to recreate the collection, set "f"`force_recreate` parameter to `True`.")assertisinstance(current_vector_config,models.VectorParams),("Expected current_vector_config to be an instance of "f"models.VectorParams, but got {type(current_vector_config)}")# Check if the vector configuration has the same dimensionality.ifcurrent_vector_config.size!=vector_size:raiseQdrantException(f"Existing Qdrant collection is configured for vectors with "f"{current_vector_config.size} "f"dimensions. Selected embeddings are {vector_size}-dimensional. "f"If you want to recreate the collection, set `force_recreate` "f"parameter to `True`.")current_distance_func=(current_vector_config.distance.name.upper()# type: ignore[union-attr])ifcurrent_distance_func!=distance_func:raiseQdrantException(f"Existing Qdrant collection is configured for "f"{current_distance_func} similarity, but requested "f"{distance_func}. Please set `distance_func` parameter to "f"`{current_distance_func}` if you want to reuse it. "f"If you want to recreate the collection, set `force_recreate` "f"parameter to `True`.")else:vectors_config=models.VectorParams(size=vector_size,distance=models.Distance[distance_func],on_disk=on_disk,)# If vector name was provided, we're going to use the named vectors feature# with just a single vector.ifvector_nameisnotNone:vectors_config={# type: ignore[assignment]vector_name:vectors_config,}client.create_collection(collection_name=collection_name,vectors_config=vectors_config,shard_number=shard_number,replication_factor=replication_factor,write_consistency_factor=write_consistency_factor,on_disk_payload=on_disk_payload,hnsw_config=hnsw_config,optimizers_config=optimizers_config,wal_config=wal_config,quantization_config=quantization_config,init_from=init_from,timeout=timeout,# type: ignore[arg-type])qdrant=cls(client=client,collection_name=collection_name,embeddings=embedding,content_payload_key=content_payload_key,metadata_payload_key=metadata_payload_key,distance_strategy=distance_func,vector_name=vector_name,async_client=async_client,)returnqdrant
[docs]@classmethodasyncdefaconstruct_instance(cls:Type[Qdrant],texts:List[str],embedding:Embeddings,location:Optional[str]=None,url:Optional[str]=None,port:Optional[int]=6333,grpc_port:int=6334,prefer_grpc:bool=False,https:Optional[bool]=None,api_key:Optional[str]=None,prefix:Optional[str]=None,timeout:Optional[int]=None,host:Optional[str]=None,path:Optional[str]=None,collection_name:Optional[str]=None,distance_func:str="Cosine",content_payload_key:str=CONTENT_KEY,metadata_payload_key:str=METADATA_KEY,vector_name:Optional[str]=VECTOR_NAME,shard_number:Optional[int]=None,replication_factor:Optional[int]=None,write_consistency_factor:Optional[int]=None,on_disk_payload:Optional[bool]=None,hnsw_config:Optional[models.HnswConfigDiff]=None,optimizers_config:Optional[models.OptimizersConfigDiff]=None,wal_config:Optional[models.WalConfigDiff]=None,quantization_config:Optional[models.QuantizationConfig]=None,init_from:Optional[models.InitFrom]=None,on_disk:Optional[bool]=None,force_recreate:bool=False,**kwargs:Any,)->Qdrant:# Just do a single quick embedding to get vector sizepartial_embeddings=awaitembedding.aembed_documents(texts[:1])vector_size=len(partial_embeddings[0])collection_name=collection_nameoruuid.uuid4().hexdistance_func=distance_func.upper()client,async_client=cls._generate_clients(location=location,url=url,port=port,grpc_port=grpc_port,prefer_grpc=prefer_grpc,https=https,api_key=api_key,prefix=prefix,timeout=timeout,host=host,path=path,**kwargs,)collection_exists=client.collection_exists(collection_name)ifcollection_existsandforce_recreate:client.delete_collection(collection_name)collection_exists=Falseifcollection_exists:# Get the vector configuration of the existing collection and vector, if it# was specified. If the old configuration does not match the current one,# an exception is raised.collection_info=client.get_collection(collection_name=collection_name)current_vector_config=collection_info.config.params.vectorsifisinstance(current_vector_config,dict)andvector_nameisnotNone:ifvector_namenotincurrent_vector_config:raiseQdrantException(f"Existing Qdrant collection {collection_name} does not "f"contain vector named {vector_name}. Did you mean one of the "f"existing vectors: {', '.join(current_vector_config.keys())}? "f"If you want to recreate the collection, set `force_recreate` "f"parameter to `True`.")current_vector_config=current_vector_config.get(vector_name)# type: ignore[assignment]elifisinstance(current_vector_config,dict)andvector_nameisNone:raiseQdrantException(f"Existing Qdrant collection {collection_name} uses named vectors. "f"If you want to reuse it, please set `vector_name` to any of the "f"existing named vectors: "f"{', '.join(current_vector_config.keys())}."f"If you want to recreate the collection, set `force_recreate` "f"parameter to `True`.")elif(notisinstance(current_vector_config,dict)andvector_nameisnotNone):raiseQdrantException(f"Existing Qdrant collection {collection_name} doesn't use named "f"vectors. If you want to reuse it, please set `vector_name` to "f"`None`. If you want to recreate the collection, set "f"`force_recreate` parameter to `True`.")assertisinstance(current_vector_config,models.VectorParams),("Expected current_vector_config to be an instance of "f"models.VectorParams, but got {type(current_vector_config)}")# Check if the vector configuration has the same dimensionality.ifcurrent_vector_config.size!=vector_size:raiseQdrantException(f"Existing Qdrant collection is configured for vectors with "f"{current_vector_config.size} "f"dimensions. Selected embeddings are {vector_size}-dimensional. "f"If you want to recreate the collection, set `force_recreate` "f"parameter to `True`.")current_distance_func=(current_vector_config.distance.name.upper()# type: ignore[union-attr])ifcurrent_distance_func!=distance_func:raiseQdrantException(f"Existing Qdrant collection is configured for "f"{current_vector_config.distance} "# type: ignore[union-attr]f"similarity. Please set `distance_func` parameter to "f"`{distance_func}` if you want to reuse it. If you want to "f"recreate the collection, set `force_recreate` parameter to "f"`True`.")else:vectors_config=models.VectorParams(size=vector_size,distance=models.Distance[distance_func],on_disk=on_disk,)# If vector name was provided, we're going to use the named vectors feature# with just a single vector.ifvector_nameisnotNone:vectors_config={# type: ignore[assignment]vector_name:vectors_config,}client.create_collection(collection_name=collection_name,vectors_config=vectors_config,shard_number=shard_number,replication_factor=replication_factor,write_consistency_factor=write_consistency_factor,on_disk_payload=on_disk_payload,hnsw_config=hnsw_config,optimizers_config=optimizers_config,wal_config=wal_config,quantization_config=quantization_config,init_from=init_from,timeout=timeout,# type: ignore[arg-type])qdrant=cls(client=client,collection_name=collection_name,embeddings=embedding,content_payload_key=content_payload_key,metadata_payload_key=metadata_payload_key,distance_strategy=distance_func,vector_name=vector_name,async_client=async_client,)returnqdrant
@staticmethoddef_cosine_relevance_score_fn(distance:float)->float:"""Normalize the distance to a score on a scale [0, 1]."""return(distance+1.0)/2.0def_select_relevance_score_fn(self)->Callable[[float],float]:""" The 'correct' relevance function may differ depending on a few things, including: - the distance / similarity metric used by the VectorStore - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) - embedding dimensionality - etc. """ifself.distance_strategy=="COSINE":returnself._cosine_relevance_score_fnelifself.distance_strategy=="DOT":returnself._max_inner_product_relevance_score_fnelifself.distance_strategy=="EUCLID":returnself._euclidean_relevance_score_fnelse:raiseValueError("Unknown distance strategy, must be cosine, ""max_inner_product, or euclidean")def_similarity_search_with_relevance_scores(self,query:str,k:int=4,**kwargs:Any,)->List[Tuple[Document,float]]:"""Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Args: query: input text k: Number of Documents to return. Defaults to 4. **kwargs: kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns: List of Tuples of (doc, similarity_score) """returnself.similarity_search_with_score(query,k,**kwargs)@sync_call_fallbackasyncdef_asimilarity_search_with_relevance_scores(self,query:str,k:int=4,**kwargs:Any,)->List[Tuple[Document,float]]:"""Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Args: query: input text k: Number of Documents to return. Defaults to 4. **kwargs: kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns: List of Tuples of (doc, similarity_score) """returnawaitself.asimilarity_search_with_score(query,k,**kwargs)@classmethoddef_build_payloads(cls,texts:Iterable[str],metadatas:Optional[List[dict]],content_payload_key:str,metadata_payload_key:str,)->List[dict]:payloads=[]fori,textinenumerate(texts):iftextisNone:raiseValueError("At least one of the texts is None. Please remove it before ""calling .from_texts or .add_texts on Qdrant instance.")metadata=metadatas[i]ifmetadatasisnotNoneelseNonepayloads.append({content_payload_key:text,metadata_payload_key:metadata,})returnpayloads@classmethoddef_document_from_scored_point(cls,scored_point:Any,collection_name:str,content_payload_key:str,metadata_payload_key:str,)->Document:metadata=scored_point.payload.get(metadata_payload_key)or{}metadata["_id"]=scored_point.idmetadata["_collection_name"]=collection_namereturnDocument(page_content=scored_point.payload.get(content_payload_key,""),metadata=metadata,)def_build_condition(self,key:str,value:Any)->List[models.FieldCondition]:out=[]ifisinstance(value,dict):for_key,valueinvalue.items():out.extend(self._build_condition(f"{key}.{_key}",value))elifisinstance(value,list):for_valueinvalue:ifisinstance(_value,dict):out.extend(self._build_condition(f"{key}[]",_value))else:out.extend(self._build_condition(f"{key}",_value))else:out.append(models.FieldCondition(key=f"{self.metadata_payload_key}.{key}",match=models.MatchValue(value=value),))returnoutdef_qdrant_filter_from_dict(self,filter:Optional[DictFilter])->Optional[models.Filter]:ifnotfilter:returnNonereturnmodels.Filter(must=[conditionforkey,valueinfilter.items()forconditioninself._build_condition(key,value)])def_embed_query(self,query:str)->List[float]:"""Embed query text. Used to provide backward compatibility with `embedding_function` argument. Args: query: Query text. Returns: List of floats representing the query embedding. """ifself.embeddingsisnotNone:embedding=self.embeddings.embed_query(query)else:ifself._embeddings_functionisnotNone:embedding=self._embeddings_function(query)else:raiseValueError("Neither of embeddings or embedding_function is set")returnembedding.tolist()ifhasattr(embedding,"tolist")elseembeddingasyncdef_aembed_query(self,query:str)->List[float]:"""Embed query text asynchronously. Used to provide backward compatibility with `embedding_function` argument. Args: query: Query text. Returns: List of floats representing the query embedding. """ifself.embeddingsisnotNone:embedding=awaitself.embeddings.aembed_query(query)else:ifself._embeddings_functionisnotNone:embedding=self._embeddings_function(query)else:raiseValueError("Neither of embeddings or embedding_function is set")returnembedding.tolist()ifhasattr(embedding,"tolist")elseembeddingdef_embed_texts(self,texts:Iterable[str])->List[List[float]]:"""Embed search texts. Used to provide backward compatibility with `embedding_function` argument. Args: texts: Iterable of texts to embed. Returns: List of floats representing the texts embedding. """ifself.embeddingsisnotNone:embeddings=self.embeddings.embed_documents(list(texts))ifhasattr(embeddings,"tolist"):embeddings=embeddings.tolist()elifself._embeddings_functionisnotNone:embeddings=[]fortextintexts:embedding=self._embeddings_function(text)ifhasattr(embeddings,"tolist"):embedding=embedding.tolist()embeddings.append(embedding)else:raiseValueError("Neither of embeddings or embedding_function is set")returnembeddingsasyncdef_aembed_texts(self,texts:Iterable[str])->List[List[float]]:"""Embed search texts. Used to provide backward compatibility with `embedding_function` argument. Args: texts: Iterable of texts to embed. Returns: List of floats representing the texts embedding. """ifself.embeddingsisnotNone:embeddings=awaitself.embeddings.aembed_documents(list(texts))ifhasattr(embeddings,"tolist"):embeddings=embeddings.tolist()elifself._embeddings_functionisnotNone:embeddings=[]fortextintexts:embedding=self._embeddings_function(text)ifhasattr(embeddings,"tolist"):embedding=embedding.tolist()embeddings.append(embedding)else:raiseValueError("Neither of embeddings or embedding_function is set")returnembeddingsdef_generate_rest_batches(self,texts:Iterable[str],metadatas:Optional[List[dict]]=None,ids:Optional[Sequence[str]]=None,batch_size:int=64,)->Generator[Tuple[List[str],List[models.PointStruct]],None,None]:texts_iterator=iter(texts)metadatas_iterator=iter(metadatasor[])ids_iterator=iter(idsor[uuid.uuid4().hexfor_initer(texts)])whilebatch_texts:=list(islice(texts_iterator,batch_size)):# Take the corresponding metadata and id for each text in a batchbatch_metadatas=list(islice(metadatas_iterator,batch_size))orNonebatch_ids=list(islice(ids_iterator,batch_size))# Generate the embeddings for all the texts in a batchbatch_embeddings=self._embed_texts(batch_texts)points=[models.PointStruct(id=point_id,vector=vectorifself.vector_nameisNoneelse{self.vector_name:vector},payload=payload,)forpoint_id,vector,payloadinzip(batch_ids,batch_embeddings,self._build_payloads(batch_texts,batch_metadatas,self.content_payload_key,self.metadata_payload_key,),)]yieldbatch_ids,pointsasyncdef_agenerate_rest_batches(self,texts:Iterable[str],metadatas:Optional[List[dict]]=None,ids:Optional[Sequence[str]]=None,batch_size:int=64,)->AsyncGenerator[Tuple[List[str],List[models.PointStruct]],None]:texts_iterator=iter(texts)metadatas_iterator=iter(metadatasor[])ids_iterator=iter(idsor[uuid.uuid4().hexfor_initer(texts)])whilebatch_texts:=list(islice(texts_iterator,batch_size)):# Take the corresponding metadata and id for each text in a batchbatch_metadatas=list(islice(metadatas_iterator,batch_size))orNonebatch_ids=list(islice(ids_iterator,batch_size))# Generate the embeddings for all the texts in a batchbatch_embeddings=awaitself._aembed_texts(batch_texts)points=[models.PointStruct(id=point_id,vector=vectorifself.vector_nameisNoneelse{self.vector_name:vector},payload=payload,)forpoint_id,vector,payloadinzip(batch_ids,batch_embeddings,self._build_payloads(batch_texts,batch_metadatas,self.content_payload_key,self.metadata_payload_key,),)]yieldbatch_ids,points@staticmethoddef_generate_clients(location:Optional[str]=None,url:Optional[str]=None,port:Optional[int]=6333,grpc_port:int=6334,prefer_grpc:bool=False,https:Optional[bool]=None,api_key:Optional[str]=None,prefix:Optional[str]=None,timeout:Optional[int]=None,host:Optional[str]=None,path:Optional[str]=None,**kwargs:Any,)->Tuple[QdrantClient,Optional[AsyncQdrantClient]]:ifapi_keyisNone:api_key=os.getenv("QDRANT_API_KEY")sync_client=QdrantClient(location=location,url=url,port=port,grpc_port=grpc_port,prefer_grpc=prefer_grpc,https=https,api_key=api_key,prefix=prefix,timeout=timeout,host=host,path=path,**kwargs,)iflocation==":memory:"orpathisnotNone:# Local Qdrant cannot co-exist with Sync and Async clients# We fallback to sync operations in this caseasync_client=Noneelse:async_client=AsyncQdrantClient(location=location,url=url,port=port,grpc_port=grpc_port,prefer_grpc=prefer_grpc,https=https,api_key=api_key,prefix=prefix,timeout=timeout,host=host,path=path,**kwargs,)returnsync_client,async_client