SageMakerCallbackHandler#
- class langchain_community.callbacks.sagemaker_callback.SageMakerCallbackHandler(run: Any)[source]#
Callback Handler that logs prompt artifacts and metrics to SageMaker Experiments.
- Parameters:
run (sagemaker.experiments.run.Run) – Run object where the experiment is logged.
Initialize callback handler.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_custom_event
Ignore custom event.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
Whether to raise an error if an exception occurs.
run_inline
Whether to run the callback inline.
Methods
__init__
(run)Initialize callback handler.
Reset the steps and delete the temporary local directory.
jsonf
(data, data_dir, filename[, is_output])To log the input data as json file artifact.
on_agent_action
(action, **kwargs)Run on agent action.
on_agent_finish
(finish, **kwargs)Run when agent ends running.
on_chain_end
(outputs, **kwargs)Run when chain ends running.
on_chain_error
(error, **kwargs)Run when chain errors.
on_chain_start
(serialized, inputs, **kwargs)Run when chain starts running.
on_chat_model_start
(serialized, messages, *, ...)Run when a chat model starts running.
on_custom_event
(name, data, *, run_id[, ...])Override to define a handler for a custom event.
on_llm_end
(response, **kwargs)Run when LLM ends running.
on_llm_error
(error, **kwargs)Run when LLM errors.
on_llm_new_token
(token, **kwargs)Run when LLM generates a new token.
on_llm_start
(serialized, prompts, **kwargs)Run when LLM starts.
on_retriever_end
(documents, *, run_id[, ...])Run when Retriever ends running.
on_retriever_error
(error, *, run_id[, ...])Run when Retriever errors.
on_retriever_start
(serialized, query, *, run_id)Run when the Retriever starts running.
on_retry
(retry_state, *, run_id[, parent_run_id])Run on a retry event.
on_text
(text, **kwargs)Run when agent is ending.
on_tool_end
(output, **kwargs)Run when tool ends running.
on_tool_error
(error, **kwargs)Run when tool errors.
on_tool_start
(serialized, input_str, **kwargs)Run when tool starts running.
- __init__(run: Any) None [source]#
Initialize callback handler.
- Parameters:
run (Any) –
- Return type:
None
- flush_tracker() None [source]#
Reset the steps and delete the temporary local directory.
- Return type:
None
- jsonf(data: Dict[str, Any], data_dir: str, filename: str, is_output: bool | None = True) None [source]#
To log the input data as json file artifact.
- Parameters:
data (Dict[str, Any]) –
data_dir (str) –
filename (str) –
is_output (bool | None) –
- Return type:
None
- on_agent_action(action: AgentAction, **kwargs: Any) Any [source]#
Run on agent action.
- Parameters:
action (AgentAction) –
kwargs (Any) –
- Return type:
Any
- on_agent_finish(finish: AgentFinish, **kwargs: Any) None [source]#
Run when agent ends running.
- Parameters:
finish (AgentFinish) –
kwargs (Any) –
- Return type:
None
- on_chain_end(outputs: Dict[str, Any], **kwargs: Any) None [source]#
Run when chain ends running.
- Parameters:
outputs (Dict[str, Any]) –
kwargs (Any) –
- Return type:
None
- on_chain_error(error: BaseException, **kwargs: Any) None [source]#
Run when chain errors.
- Parameters:
error (BaseException) –
kwargs (Any) –
- Return type:
None
- on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) None [source]#
Run when chain starts running.
- Parameters:
serialized (Dict[str, Any]) –
inputs (Dict[str, Any]) –
kwargs (Any) –
- Return type:
None
- on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: UUID | None = None, tags: List[str] | None = None, metadata: Dict[str, Any] | None = None, **kwargs: Any) Any #
Run when a chat model starts running.
- ATTENTION: This method is called for chat models. If you’re implementing
a handler for a non-chat model, you should use on_llm_start instead.
- Parameters:
serialized (Dict[str, Any]) – The serialized chat model.
messages (List[List[BaseMessage]]) – The messages.
run_id (UUID) – The run ID. This is the ID of the current run.
parent_run_id (UUID) – The parent run ID. This is the ID of the parent run.
tags (Optional[List[str]]) – The tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
kwargs (Any) – Additional keyword arguments.
- Return type:
Any
- on_custom_event(name: str, data: Any, *, run_id: UUID, tags: List[str] | None = None, metadata: Dict[str, Any] | None = None, **kwargs: Any) Any #
Override to define a handler for a custom event.
- Parameters:
name (str) – The name of the custom event.
data (Any) – The data for the custom event. Format will match the format specified by the user.
run_id (UUID) – The ID of the run.
tags (List[str] | None) – The tags associated with the custom event (includes inherited tags).
metadata (Dict[str, Any] | None) – The metadata associated with the custom event (includes inherited metadata).
kwargs (Any) –
- Return type:
Any
New in version 0.2.15.
- on_llm_end(response: LLMResult, **kwargs: Any) None [source]#
Run when LLM ends running.
- Parameters:
response (LLMResult) –
kwargs (Any) –
- Return type:
None
- on_llm_error(error: BaseException, **kwargs: Any) None [source]#
Run when LLM errors.
- Parameters:
error (BaseException) –
kwargs (Any) –
- Return type:
None
- on_llm_new_token(token: str, **kwargs: Any) None [source]#
Run when LLM generates a new token.
- Parameters:
token (str) –
kwargs (Any) –
- Return type:
None
- on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) None [source]#
Run when LLM starts.
- Parameters:
serialized (Dict[str, Any]) –
prompts (List[str]) –
kwargs (Any) –
- Return type:
None
- on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: UUID | None = None, **kwargs: Any) Any #
Run when Retriever ends running.
- Parameters:
documents (Sequence[Document]) – The documents retrieved.
run_id (UUID) – The run ID. This is the ID of the current run.
parent_run_id (UUID) – The parent run ID. This is the ID of the parent run.
kwargs (Any) – Additional keyword arguments.
- Return type:
Any
- on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: UUID | None = None, **kwargs: Any) Any #
Run when Retriever errors.
- Parameters:
error (BaseException) – The error that occurred.
run_id (UUID) – The run ID. This is the ID of the current run.
parent_run_id (UUID) – The parent run ID. This is the ID of the parent run.
kwargs (Any) – Additional keyword arguments.
- Return type:
Any
- on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: UUID | None = None, tags: List[str] | None = None, metadata: Dict[str, Any] | None = None, **kwargs: Any) Any #
Run when the Retriever starts running.
- Parameters:
serialized (Dict[str, Any]) – The serialized Retriever.
query (str) – The query.
run_id (UUID) – The run ID. This is the ID of the current run.
parent_run_id (UUID) – The parent run ID. This is the ID of the parent run.
tags (Optional[List[str]]) – The tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
kwargs (Any) – Additional keyword arguments.
- Return type:
Any
- on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: UUID | None = None, **kwargs: Any) Any #
Run on a retry event.
- Parameters:
retry_state (RetryCallState) – The retry state.
run_id (UUID) – The run ID. This is the ID of the current run.
parent_run_id (UUID) – The parent run ID. This is the ID of the parent run.
kwargs (Any) – Additional keyword arguments.
- Return type:
Any
- on_text(text: str, **kwargs: Any) None [source]#
Run when agent is ending.
- Parameters:
text (str) –
kwargs (Any) –
- Return type:
None
- on_tool_end(output: Any, **kwargs: Any) None [source]#
Run when tool ends running.
- Parameters:
output (Any) –
kwargs (Any) –
- Return type:
None
Examples using SageMakerCallbackHandler