ChatAnyscale#
- class langchain_community.chat_models.anyscale.ChatAnyscale[source]#
Bases:
ChatOpenAI
Anyscale Chat large language models.
See https://www.anyscale.com/ for information about Anyscale.
To use, you should have the
openai
python package installed, and the environment variableANYSCALE_API_KEY
set with your API key. Alternatively, you can use the anyscale_api_key keyword argument.Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class.
Example
from langchain_community.chat_models import ChatAnyscale chat = ChatAnyscale(model_name="meta-llama/Llama-2-7b-chat-hf")
Note
ChatAnyscale implements the standard
Runnable Interface
. πThe
Runnable Interface
has additional methods that are available on runnables, such aswith_types
,with_retry
,assign
,bind
,get_graph
, and more.- param anyscale_api_base: str = 'https://api.endpoints.anyscale.com/v1'#
Base URL path for API requests, leave blank if not using a proxy or service emulator.
- param anyscale_api_key: SecretStr = None#
AnyScale Endpoints API keys.
- Constraints:
type = string
writeOnly = True
format = password
- param anyscale_proxy: str | None = None#
To support explicit proxy for Anyscale.
- param available_models: Set[str] | None = None#
Available models from Anyscale API.
- param cache: BaseCache | bool | None = None#
Whether to cache the response.
If true, will use the global cache.
If false, will not use a cache
If None, will use the global cache if itβs set, otherwise no cache.
If instance of BaseCache, will use the provided cache.
Caching is not currently supported for streaming methods of models.
- param callback_manager: BaseCallbackManager | None = None#
Deprecated since version 0.1.7: Use
callbacks
instead.Callback manager to add to the run trace.
- param callbacks: Callbacks = None#
Callbacks to add to the run trace.
- param custom_get_token_ids: Callable[[str], List[int]] | None = None#
Optional encoder to use for counting tokens.
- param default_headers: Mapping[str, str] | None = None#
- param default_query: Mapping[str, object] | None = None#
- param disable_streaming: bool | Literal['tool_calling'] = False#
Whether to disable streaming for this model.
If streaming is bypassed, then
stream()/astream()
will defer toinvoke()/ainvoke()
.If True, will always bypass streaming case.
If βtool_callingβ, will bypass streaming case only when the model is called with a
tools
keyword argument.If False (default), will always use streaming case if available.
- param http_client: Any | None = None#
Optional httpx.Client.
- param max_retries: int = 2#
Maximum number of retries to make when generating.
- param max_tokens: int | None = None#
Maximum number of tokens to generate.
- param metadata: Dict[str, Any] | None = None#
Metadata to add to the run trace.
- param model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not explicitly specified.
- param model_name: str = 'meta-llama/Meta-Llama-3-8B-Instruct' (alias 'model')#
Model name to use.
- param n: int = 1#
Number of chat completions to generate for each prompt.
- param openai_api_base: str | None = None (alias 'base_url')#
Base URL path for API requests, leave blank if not using a proxy or service emulator.
- param openai_api_key: str | None = None (alias 'api_key')#
Automatically inferred from env var OPENAI_API_KEY if not provided.
- param openai_organization: str | None = None (alias 'organization')#
Automatically inferred from env var OPENAI_ORG_ID if not provided.
- param openai_proxy: str | None = None#
- param rate_limiter: BaseRateLimiter | None = None#
An optional rate limiter to use for limiting the number of requests.
- param request_timeout: float | Tuple[float, float] | Any | None = None (alias 'timeout')#
Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or None.
- param streaming: bool = False#
Whether to stream the results or not.
- param tags: List[str] | None = None#
Tags to add to the run trace.
- param temperature: float = 0.7#
What sampling temperature to use.
- param tiktoken_model_name: str | None = None#
The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here.
- param verbose: bool [Optional]#
Whether to print out response text.
- __call__(messages: List[BaseMessage], stop: List[str] | None = None, callbacks: List[BaseCallbackHandler] | BaseCallbackManager | None = None, **kwargs: Any) BaseMessage #
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters:
messages (List[BaseMessage]) β
stop (List[str] | None) β
callbacks (List[BaseCallbackHandler] | BaseCallbackManager | None) β
kwargs (Any) β
- Return type:
- async abatch(inputs: List[Input], config: RunnableConfig | List[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) List[Output] #
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.
- Parameters:
inputs (List[Input]) β A list of inputs to the Runnable.
config (RunnableConfig | List[RunnableConfig] | None) β A config to use when invoking the Runnable. The config supports standard keys like βtagsβ, βmetadataβ for tracing purposes, βmax_concurrencyβ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.
return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Any | None) β Additional keyword arguments to pass to the Runnable.
- Returns:
A list of outputs from the Runnable.
- Return type:
List[Output]
- async abatch_as_completed(inputs: Sequence[Input], config: RunnableConfig | Sequence[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) AsyncIterator[Tuple[int, Output | Exception]] #
Run ainvoke in parallel on a list of inputs, yielding results as they complete.
- Parameters:
inputs (Sequence[Input]) β A list of inputs to the Runnable.
config (RunnableConfig | Sequence[RunnableConfig] | None) β A config to use when invoking the Runnable. The config supports standard keys like βtagsβ, βmetadataβ for tracing purposes, βmax_concurrencyβ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None. Defaults to None.
return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Any | None) β Additional keyword arguments to pass to the Runnable.
- Yields:
A tuple of the index of the input and the output from the Runnable.
- Return type:
AsyncIterator[Tuple[int, Output | Exception]]
- async agenerate(messages: List[List[BaseMessage]], stop: List[str] | None = None, callbacks: List[BaseCallbackHandler] | BaseCallbackManager | None = None, *, tags: List[str] | None = None, metadata: Dict[str, Any] | None = None, run_name: str | None = None, run_id: UUID | None = None, **kwargs: Any) LLMResult #
Asynchronously pass a sequence of prompts to a model and return generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
- Parameters:
messages (List[List[BaseMessage]]) β List of list of messages.
stop (List[str] | None) β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks (List[BaseCallbackHandler] | BaseCallbackManager | None) β Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs (Any) β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
tags (List[str] | None) β
metadata (Dict[str, Any] | None) β
run_name (str | None) β
run_id (UUID | None) β
**kwargs β
- Returns:
- An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
- Return type:
- async agenerate_prompt(prompts: List[PromptValue], stop: List[str] | None = None, callbacks: List[BaseCallbackHandler] | BaseCallbackManager | None = None, **kwargs: Any) LLMResult #
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
- Parameters:
prompts (List[PromptValue]) β List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
stop (List[str] | None) β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks (List[BaseCallbackHandler] | BaseCallbackManager | None) β Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs (Any) β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns:
- An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
- Return type:
- async ainvoke(input: LanguageModelInput, config: RunnableConfig | None = None, *, stop: List[str] | None = None, **kwargs: Any) BaseMessage #
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if the Runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
- Parameters:
input (LanguageModelInput) β
config (Optional[RunnableConfig]) β
stop (Optional[List[str]]) β
kwargs (Any) β
- Return type:
- async apredict(text: str, *, stop: Sequence[str] | None = None, **kwargs: Any) str #
Deprecated since version langchain-core==0.1.7: Use
ainvoke
instead.- Parameters:
text (str) β
stop (Sequence[str] | None) β
kwargs (Any) β
- Return type:
str
- async apredict_messages(messages: List[BaseMessage], *, stop: Sequence[str] | None = None, **kwargs: Any) BaseMessage #
Deprecated since version langchain-core==0.1.7: Use
ainvoke
instead.- Parameters:
messages (List[BaseMessage]) β
stop (Sequence[str] | None) β
kwargs (Any) β
- Return type:
- async astream(input: LanguageModelInput, config: RunnableConfig | None = None, *, stop: List[str] | None = None, **kwargs: Any) AsyncIterator[BaseMessageChunk] #
Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
- Parameters:
input (LanguageModelInput) β The input to the Runnable.
config (Optional[RunnableConfig]) β The config to use for the Runnable. Defaults to None.
kwargs (Any) β Additional keyword arguments to pass to the Runnable.
stop (Optional[List[str]]) β
- Yields:
The output of the Runnable.
- Return type:
AsyncIterator[BaseMessageChunk]
- astream_events(input: Any, config: RunnableConfig | None = None, *, version: Literal['v1', 'v2'], include_names: Sequence[str] | None = None, include_types: Sequence[str] | None = None, include_tags: Sequence[str] | None = None, exclude_names: Sequence[str] | None = None, exclude_types: Sequence[str] | None = None, exclude_tags: Sequence[str] | None = None, **kwargs: Any) AsyncIterator[StandardStreamEvent | CustomStreamEvent] #
Beta
This API is in beta and may change in the future.
Generate a stream of events.
Use to create an iterator over StreamEvents that provide real-time information about the progress of the Runnable, including StreamEvents from intermediate results.
A StreamEvent is a dictionary with the following schema:
event
: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
name
: str - The name of the Runnable that generated the event.run_id
: str - randomly generated ID associated with the given execution ofthe Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
parent_ids
: List[str] - The IDs of the parent runnables thatgenerated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
tags
: Optional[List[str]] - The tags of the Runnable that generatedthe event.
metadata
: Optional[Dict[str, Any]] - The metadata of the Runnablethat generated the event.
data
: Dict[str, Any]
Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
event
name
chunk
input
output
on_chat_model_start
[model name]
{βmessagesβ: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content=βhelloβ)
on_chat_model_end
[model name]
{βmessagesβ: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=βhello worldβ)
on_llm_start
[model name]
{βinputβ: βhelloβ}
on_llm_stream
[model name]
βHelloβ
on_llm_end
[model name]
βHello human!β
on_chain_start
format_docs
on_chain_stream
format_docs
βhello world!, goodbye world!β
on_chain_end
format_docs
[Document(β¦)]
βhello world!, goodbye world!β
on_tool_start
some_tool
{βxβ: 1, βyβ: β2β}
on_tool_end
some_tool
{βxβ: 1, βyβ: β2β}
on_retriever_start
[retriever name]
{βqueryβ: βhelloβ}
on_retriever_end
[retriever name]
{βqueryβ: βhelloβ}
[Document(β¦), ..]
on_prompt_start
[template_name]
{βquestionβ: βhelloβ}
on_prompt_end
[template_name]
{βquestionβ: βhelloβ}
ChatPromptValue(messages: [SystemMessage, β¦])
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
Attribute
Type
Description
name
str
A user defined name for the event.
data
Any
The data associated with the event. This can be anything, though we suggest making it JSON serializable.
Here are declarations associated with the standard events shown above:
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- Parameters:
input (Any) β The input to the Runnable.
config (RunnableConfig | None) β The config to use for the Runnable.
version (Literal['v1', 'v2']) β The version of the schema to use either v2 or v1. Users should use v2. v1 is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in v2.
include_names (Sequence[str] | None) β Only include events from runnables with matching names.
include_types (Sequence[str] | None) β Only include events from runnables with matching types.
include_tags (Sequence[str] | None) β Only include events from runnables with matching tags.
exclude_names (Sequence[str] | None) β Exclude events from runnables with matching names.
exclude_types (Sequence[str] | None) β Exclude events from runnables with matching types.
exclude_tags (Sequence[str] | None) β Exclude events from runnables with matching tags.
kwargs (Any) β Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.
- Yields:
An async stream of StreamEvents.
- Raises:
NotImplementedError β If the version is not v1 or v2.
- Return type:
AsyncIterator[StandardStreamEvent | CustomStreamEvent]
- batch(inputs: List[Input], config: RunnableConfig | List[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) List[Output] #
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.
- Parameters:
inputs (List[Input]) β
config (RunnableConfig | List[RunnableConfig] | None) β
return_exceptions (bool) β
kwargs (Any | None) β
- Return type:
List[Output]
- batch_as_completed(inputs: Sequence[Input], config: RunnableConfig | Sequence[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) Iterator[Tuple[int, Output | Exception]] #
Run invoke in parallel on a list of inputs, yielding results as they complete.
- Parameters:
inputs (Sequence[Input]) β
config (RunnableConfig | Sequence[RunnableConfig] | None) β
return_exceptions (bool) β
kwargs (Any | None) β
- Return type:
Iterator[Tuple[int, Output | Exception]]
- bind_functions(functions: Sequence[Dict[str, Any] | Type[BaseModel] | Callable], function_call: str | None = None, **kwargs: Any) Runnable[PromptValue | str | Sequence[BaseMessage | List[str] | Tuple[str, str] | str | Dict[str, Any]], BaseMessage] #
Bind functions (and other objects) to this chat model.
- Parameters:
functions (Sequence[Dict[str, Any] | Type[BaseModel] | Callable]) β A list of function definitions to bind to this chat model. Can be a dictionary, pydantic model, or callable. Pydantic models and callables will be automatically converted to their schema dictionary representation.
function_call (str | None) β Which function to require the model to call. Must be the name of the single provided function or βautoβ to automatically determine which function to call (if any).
kwargs (Any) β Any additional parameters to pass to the
Runnable
constructor.
- Return type:
Runnable[PromptValue | str | Sequence[BaseMessage | List[str] | Tuple[str, str] | str | Dict[str, Any]], BaseMessage]
- bind_tools(tools: Sequence[Dict[str, Any] | Type | Callable | BaseTool], **kwargs: Any) Runnable[LanguageModelInput, BaseMessage] #
- Parameters:
tools (Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]]) β
kwargs (Any) β
- Return type:
Runnable[LanguageModelInput, BaseMessage]
- call_as_llm(message: str, stop: List[str] | None = None, **kwargs: Any) str #
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters:
message (str) β
stop (List[str] | None) β
kwargs (Any) β
- Return type:
str
- completion_with_retry(run_manager: CallbackManagerForLLMRun | None = None, **kwargs: Any) Any #
Use tenacity to retry the completion call.
- Parameters:
run_manager (CallbackManagerForLLMRun | None) β
kwargs (Any) β
- Return type:
Any
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]) RunnableSerializable[Input, Output] #
Configure alternatives for Runnables that can be set at runtime.
- Parameters:
which (ConfigurableField) β The ConfigurableField instance that will be used to select the alternative.
default_key (str) β The default key to use if no alternative is selected. Defaults to βdefaultβ.
prefix_keys (bool) β Whether to prefix the keys with the ConfigurableField id. Defaults to False.
**kwargs (Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]) β A dictionary of keys to Runnable instances or callables that return Runnable instances.
- Returns:
A new Runnable with the alternatives configured.
- Return type:
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: ConfigurableField | ConfigurableFieldSingleOption | ConfigurableFieldMultiOption) RunnableSerializable[Input, Output] #
Configure particular Runnable fields at runtime.
- Parameters:
**kwargs (ConfigurableField | ConfigurableFieldSingleOption | ConfigurableFieldMultiOption) β A dictionary of ConfigurableField instances to configure.
- Returns:
A new Runnable with the fields configured.
- Return type:
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- generate(messages: List[List[BaseMessage]], stop: List[str] | None = None, callbacks: List[BaseCallbackHandler] | BaseCallbackManager | None = None, *, tags: List[str] | None = None, metadata: Dict[str, Any] | None = None, run_name: str | None = None, run_id: UUID | None = None, **kwargs: Any) LLMResult #
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
- Parameters:
messages (List[List[BaseMessage]]) β List of list of messages.
stop (List[str] | None) β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks (List[BaseCallbackHandler] | BaseCallbackManager | None) β Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs (Any) β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
tags (List[str] | None) β
metadata (Dict[str, Any] | None) β
run_name (str | None) β
run_id (UUID | None) β
**kwargs β
- Returns:
- An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
- Return type:
- generate_prompt(prompts: List[PromptValue], stop: List[str] | None = None, callbacks: List[BaseCallbackHandler] | BaseCallbackManager | None = None, **kwargs: Any) LLMResult #
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
- Parameters:
prompts (List[PromptValue]) β List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
stop (List[str] | None) β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks (List[BaseCallbackHandler] | BaseCallbackManager | None) β Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs (Any) β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns:
- An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
- Return type:
- static get_available_models(anyscale_api_key: str | None = None, anyscale_api_base: str = 'https://api.endpoints.anyscale.com/v1') Set[str] [source]#
Get available models from Anyscale API.
- Parameters:
anyscale_api_key (str | None) β
anyscale_api_base (str) β
- Return type:
Set[str]
- get_num_tokens(text: str) int #
Get the number of tokens present in the text.
Useful for checking if an input fits in a modelβs context window.
- Parameters:
text (str) β The string input to tokenize.
- Returns:
The integer number of tokens in the text.
- Return type:
int
- get_num_tokens_from_messages(messages: list[langchain_core.messages.base.BaseMessage]) int [source]#
Calculate num tokens with tiktoken package. Official documentation: openai/openai-cookbook
- Parameters:
messages (list[langchain_core.messages.base.BaseMessage]) β
- Return type:
int
- get_token_ids(text: str) List[int] #
Get the tokens present in the text with tiktoken package.
- Parameters:
text (str) β
- Return type:
List[int]
- invoke(input: LanguageModelInput, config: RunnableConfig | None = None, *, stop: List[str] | None = None, **kwargs: Any) BaseMessage #
Transform a single input into an output. Override to implement.
- Parameters:
input (LanguageModelInput) β The input to the Runnable.
config (Optional[RunnableConfig]) β A config to use when invoking the Runnable. The config supports standard keys like βtagsβ, βmetadataβ for tracing purposes, βmax_concurrencyβ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.
stop (Optional[List[str]]) β
kwargs (Any) β
- Returns:
The output of the Runnable.
- Return type:
- predict(text: str, *, stop: Sequence[str] | None = None, **kwargs: Any) str #
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters:
text (str) β
stop (Sequence[str] | None) β
kwargs (Any) β
- Return type:
str
- predict_messages(messages: List[BaseMessage], *, stop: Sequence[str] | None = None, **kwargs: Any) BaseMessage #
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters:
messages (List[BaseMessage]) β
stop (Sequence[str] | None) β
kwargs (Any) β
- Return type:
- stream(input: LanguageModelInput, config: RunnableConfig | None = None, *, stop: List[str] | None = None, **kwargs: Any) Iterator[BaseMessageChunk] #
Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.
- Parameters:
input (LanguageModelInput) β The input to the Runnable.
config (Optional[RunnableConfig]) β The config to use for the Runnable. Defaults to None.
kwargs (Any) β Additional keyword arguments to pass to the Runnable.
stop (Optional[List[str]]) β
- Yields:
The output of the Runnable.
- Return type:
Iterator[BaseMessageChunk]
- to_json() SerializedConstructor | SerializedNotImplemented #
Serialize the Runnable to JSON.
- Returns:
A JSON-serializable representation of the Runnable.
- Return type:
- with_structured_output(schema: Dict | Type, *, include_raw: bool = False, **kwargs: Any) Runnable[LanguageModelInput, Dict | BaseModel] #
Model wrapper that returns outputs formatted to match the given schema.
- Parameters:
schema (Union[Dict, Type]) β
- The output schema. Can be passed in as:
an OpenAI function/tool schema,
a JSON Schema,
a TypedDict class (support added in 0.2.26),
or a Pydantic class.
If
schema
is a Pydantic class then the model output will be a Pydantic instance of that class, and the model-generated fields will be validated by the Pydantic class. Otherwise the model output will be a dict and will not be validated. Seelangchain_core.utils.function_calling.convert_to_openai_tool()
for more on how to properly specify types and descriptions of schema fields when specifying a Pydantic or TypedDict class.Changed in version 0.2.26: Added support for TypedDict class.
include_raw (bool) β If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True then both the raw model response (a BaseMessage) and the parsed model response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys βrawβ, βparsedβ, and βparsing_errorβ.
kwargs (Any) β
- Returns:
A Runnable that takes same inputs as a
langchain_core.language_models.chat.BaseChatModel
.If
include_raw
is False andschema
is a Pydantic class, Runnable outputs an instance ofschema
(i.e., a Pydantic object).Otherwise, if
include_raw
is False then Runnable outputs a dict.- If
include_raw
is True, then Runnable outputs a dict with keys: "raw"
: BaseMessage"parsed"
: None if there was a parsing error, otherwise the type depends on theschema
as described above."parsing_error"
: Optional[BaseException]
- If
- Return type:
- Example: Pydantic schema (include_raw=False):
from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatModel(model="model-name", temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> AnswerWithJustification( # answer='They weigh the same', # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' # )
- Example: Pydantic schema (include_raw=True):
from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatModel(model="model-name", temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}), # 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'), # 'parsing_error': None # }
- Example: Dict schema (include_raw=False):
from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils.function_calling import convert_to_openai_tool class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str dict_schema = convert_to_openai_tool(AnswerWithJustification) llm = ChatModel(model="model-name", temperature=0) structured_llm = llm.with_structured_output(dict_schema) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'answer': 'They weigh the same', # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' # }
Examples using ChatAnyscale