DedocBaseLoader#
- class langchain_community.document_loaders.dedoc.DedocBaseLoader(file_path: str, *, split: str = 'document', with_tables: bool = True, with_attachments: str | bool = False, recursion_deep_attachments: int = 10, pdf_with_text_layer: str = 'auto_tabby', language: str = 'rus+eng', pages: str = ':', is_one_column_document: str = 'auto', document_orientation: str = 'auto', need_header_footer_analysis: str | bool = False, need_binarization: str | bool = False, need_pdf_table_analysis: str | bool = True, delimiter: str | None = None, encoding: str | None = None)[source]#
Base Loader that uses dedoc (https://dedoc.readthedocs.io).
- Loader enables extracting text, tables and attached files from the given file:
- Text can be split by pages, dedoc tree nodes, textual lines
(according to the split parameter).
- Attached files (when with_attachments=True)
are split according to the split parameter. For attachments, langchain Document object has an additional metadata field `type`=”attachment”.
- Tables (when with_tables=True) are not split - each table corresponds to one
langchain Document object. For tables, Document object has additional metadata fields type`=”table” and `text_as_html with table HTML representation.
Initialize with file path and parsing parameters.
- Parameters:
file_path (str) – path to the file for processing
split (str) –
type of document splitting into parts (each part is returned separately), default value “document” “document”: document text is returned as a single langchain Document
object (don’t split)
- ”page”: split document text into pages (works for PDF, DJVU, PPTX, PPT,
ODP)
- ”node”: split document text into tree nodes (title nodes, list item
nodes, raw text nodes)
”line”: split document text into lines
with_tables (bool) – add tables to the result - each table is returned as a single langchain Document object
dedoc (Parameters used for document parsing via) –
(https://dedoc.readthedocs.io/en/latest/parameters/parameters.html):
with_attachments: enable attached files extraction recursion_deep_attachments: recursion level for attached files
extraction, works only when with_attachments==True
- pdf_with_text_layer: type of handler for parsing PDF documents,
available options [“true”, “false”, “tabby”, “auto”, “auto_tabby” (default)]
- language: language of the document for PDF without a textual layer and
images, available options [“eng”, “rus”, “rus+eng” (default)], the list of languages can be extended, please see https://dedoc.readthedocs.io/en/latest/tutorials/add_new_language.html
pages: page slice to define the reading range for parsing PDF documents is_one_column_document: detect number of columns for PDF without
a textual layer and images, available options [“true”, “false”, “auto” (default)]
- document_orientation: fix document orientation (90, 180, 270 degrees)
for PDF without a textual layer and images, available options [“auto” (default), “no_change”]
- need_header_footer_analysis: remove headers and footers from the output
result for parsing PDF and images
- need_binarization: clean pages background (binarize) for PDF without a
textual layer and images
- need_pdf_table_analysis: parse tables for PDF without a textual layer
and images
delimiter: column separator for CSV, TSV files encoding: encoding of TXT, CSV, TSV
with_attachments (str | bool) –
recursion_deep_attachments (int) –
pdf_with_text_layer (str) –
language (str) –
pages (str) –
is_one_column_document (str) –
document_orientation (str) –
need_header_footer_analysis (str | bool) –
need_binarization (str | bool) –
need_pdf_table_analysis (str | bool) –
delimiter (str | None) –
encoding (str | None) –
Methods
__init__
(file_path, *[, split, with_tables, ...])Initialize with file path and parsing parameters.
A lazy loader for Documents.
aload
()Load data into Document objects.
Lazily load documents.
load
()Load data into Document objects.
load_and_split
([text_splitter])Load Documents and split into chunks.
- __init__(file_path: str, *, split: str = 'document', with_tables: bool = True, with_attachments: str | bool = False, recursion_deep_attachments: int = 10, pdf_with_text_layer: str = 'auto_tabby', language: str = 'rus+eng', pages: str = ':', is_one_column_document: str = 'auto', document_orientation: str = 'auto', need_header_footer_analysis: str | bool = False, need_binarization: str | bool = False, need_pdf_table_analysis: str | bool = True, delimiter: str | None = None, encoding: str | None = None) None [source]#
Initialize with file path and parsing parameters.
- Parameters:
file_path (str) – path to the file for processing
split (str) –
type of document splitting into parts (each part is returned separately), default value “document” “document”: document text is returned as a single langchain Document
object (don’t split)
- ”page”: split document text into pages (works for PDF, DJVU, PPTX, PPT,
ODP)
- ”node”: split document text into tree nodes (title nodes, list item
nodes, raw text nodes)
”line”: split document text into lines
with_tables (bool) – add tables to the result - each table is returned as a single langchain Document object
dedoc (Parameters used for document parsing via) –
(https://dedoc.readthedocs.io/en/latest/parameters/parameters.html):
with_attachments: enable attached files extraction recursion_deep_attachments: recursion level for attached files
extraction, works only when with_attachments==True
- pdf_with_text_layer: type of handler for parsing PDF documents,
available options [“true”, “false”, “tabby”, “auto”, “auto_tabby” (default)]
- language: language of the document for PDF without a textual layer and
images, available options [“eng”, “rus”, “rus+eng” (default)], the list of languages can be extended, please see https://dedoc.readthedocs.io/en/latest/tutorials/add_new_language.html
pages: page slice to define the reading range for parsing PDF documents is_one_column_document: detect number of columns for PDF without
a textual layer and images, available options [“true”, “false”, “auto” (default)]
- document_orientation: fix document orientation (90, 180, 270 degrees)
for PDF without a textual layer and images, available options [“auto” (default), “no_change”]
- need_header_footer_analysis: remove headers and footers from the output
result for parsing PDF and images
- need_binarization: clean pages background (binarize) for PDF without a
textual layer and images
- need_pdf_table_analysis: parse tables for PDF without a textual layer
and images
delimiter: column separator for CSV, TSV files encoding: encoding of TXT, CSV, TSV
with_attachments (str | bool) –
recursion_deep_attachments (int) –
pdf_with_text_layer (str) –
language (str) –
pages (str) –
is_one_column_document (str) –
document_orientation (str) –
need_header_footer_analysis (str | bool) –
need_binarization (str | bool) –
need_pdf_table_analysis (str | bool) –
delimiter (str | None) –
encoding (str | None) –
- Return type:
None
- async alazy_load() AsyncIterator[Document] #
A lazy loader for Documents.
- Return type:
AsyncIterator[Document]
- load_and_split(text_splitter: TextSplitter | None = None) List[Document] #
Load Documents and split into chunks. Chunks are returned as Documents.
Do not override this method. It should be considered to be deprecated!
- Parameters:
text_splitter (Optional[TextSplitter]) – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter.
- Returns:
List of Documents.
- Return type:
List[Document]