BaseMultiActionAgent#

class langchain.agents.agent.BaseMultiActionAgent[source]#

Bases: BaseModel

Base Multi Action Agent class.

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

abstract async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: List[BaseCallbackHandler] | BaseCallbackManager | None = None, **kwargs: Any) β†’ List[AgentAction] | AgentFinish[source]#

Async given input, decided what to do.

Parameters:
  • intermediate_steps (List[Tuple[AgentAction, str]]) – Steps the LLM has taken to date, along with the observations.

  • callbacks (List[BaseCallbackHandler] | BaseCallbackManager | None) – Callbacks to run.

  • **kwargs (Any) – User inputs.

Returns:

Actions specifying what tool to use.

Return type:

List[AgentAction] | AgentFinish

get_allowed_tools() β†’ List[str] | None[source]#

Get allowed tools.

Returns:

Allowed tools.

Return type:

Optional[List[str]]

abstract plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: List[BaseCallbackHandler] | BaseCallbackManager | None = None, **kwargs: Any) β†’ List[AgentAction] | AgentFinish[source]#

Given input, decided what to do.

Parameters:
  • intermediate_steps (List[Tuple[AgentAction, str]]) – Steps the LLM has taken to date, along with the observations.

  • callbacks (List[BaseCallbackHandler] | BaseCallbackManager | None) – Callbacks to run.

  • **kwargs (Any) – User inputs.

Returns:

Actions specifying what tool to use.

Return type:

List[AgentAction] | AgentFinish

return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) β†’ AgentFinish[source]#

Return response when agent has been stopped due to max iterations.

Parameters:
  • early_stopping_method (str) – Method to use for early stopping.

  • intermediate_steps (List[Tuple[AgentAction, str]]) – Steps the LLM has taken to date, along with observations.

  • **kwargs (Any) – User inputs.

Returns:

Agent finish object.

Return type:

AgentFinish

Raises:

ValueError – If early_stopping_method is not supported.

save(file_path: Path | str) β†’ None[source]#

Save the agent.

Parameters:

file_path (Path | str) – Path to file to save the agent to.

Raises:
  • NotImplementedError – If agent does not support saving.

  • ValueError – If file_path is not json or yaml.

Return type:

None

Example: .. code-block:: python

# If working with agent executor agent.agent.save(file_path=”path/agent.yaml”)

tool_run_logging_kwargs() β†’ Dict[source]#

Return logging kwargs for tool run.

Return type:

Dict

property return_values: List[str]#

Return values of the agent.