[docs]@deprecated(since="0.2.11",removal="1.0",alternative_import="langchain_aws.BedrockEmbeddings",)classBedrockEmbeddings(BaseModel,Embeddings):"""Bedrock embedding models. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Bedrock service. """""" Example: .. code-block:: python from langchain_community.bedrock_embeddings import BedrockEmbeddings region_name ="us-east-1" credentials_profile_name = "default" model_id = "amazon.titan-embed-text-v1" be = BedrockEmbeddings( credentials_profile_name=credentials_profile_name, region_name=region_name, model_id=model_id ) """client:Any=None#: :meta private:"""Bedrock client."""region_name:Optional[str]=None"""The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config in case it is not provided here. """credentials_profile_name:Optional[str]=None"""The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """model_id:str="amazon.titan-embed-text-v1""""Id of the model to call, e.g., amazon.titan-embed-text-v1, this is equivalent to the modelId property in the list-foundation-models api"""model_kwargs:Optional[Dict]=None"""Keyword arguments to pass to the model."""endpoint_url:Optional[str]=None"""Needed if you don't want to default to us-east-1 endpoint"""normalize:bool=False"""Whether the embeddings should be normalized to unit vectors"""model_config=ConfigDict(extra="forbid",protected_namespaces=())@model_validator(mode="after")defvalidate_environment(self)->Self:"""Validate that AWS credentials to and python package exists in environment."""ifself.clientisnotNone:returnselftry:importboto3ifself.credentials_profile_nameisnotNone:session=boto3.Session(profile_name=self.credentials_profile_name)else:# use default credentialssession=boto3.Session()client_params={}ifself.region_name:client_params["region_name"]=self.region_nameifself.endpoint_url:client_params["endpoint_url"]=self.endpoint_urlself.client=session.client("bedrock-runtime",**client_params)exceptImportError:raiseImportError("Could not import boto3 python package. ""Please install it with `pip install boto3`.")exceptExceptionase:raiseValueError("Could not load credentials to authenticate with AWS client. ""Please check that credentials in the specified "f"profile name are valid. Bedrock error: {e}")fromereturnselfdef_embedding_func(self,text:str)->List[float]:"""Call out to Bedrock embedding endpoint."""# replace newlines, which can negatively affect performance.text=text.replace(os.linesep," ")# format input body for providerprovider=self.model_id.split(".")[0]_model_kwargs=self.model_kwargsor{}input_body={**_model_kwargs}ifprovider=="cohere":if"input_type"notininput_body.keys():input_body["input_type"]="search_document"input_body["texts"]=[text]else:# includes common provider == "amazon"input_body["inputText"]=textbody=json.dumps(input_body)try:# invoke bedrock APIresponse=self.client.invoke_model(body=body,modelId=self.model_id,accept="application/json",contentType="application/json",)# format output based on providerresponse_body=json.loads(response.get("body").read())ifprovider=="cohere":returnresponse_body.get("embeddings")[0]else:# includes common provider == "amazon"returnresponse_body.get("embedding")exceptExceptionase:raiseValueError(f"Error raised by inference endpoint: {e}")def_normalize_vector(self,embeddings:List[float])->List[float]:"""Normalize the embedding to a unit vector."""emb=np.array(embeddings)norm_emb=emb/np.linalg.norm(emb)returnnorm_emb.tolist()
[docs]defembed_documents(self,texts:List[str])->List[List[float]]:"""Compute doc embeddings using a Bedrock model. Args: texts: The list of texts to embed Returns: List of embeddings, one for each text. """results=[]fortextintexts:response=self._embedding_func(text)ifself.normalize:response=self._normalize_vector(response)results.append(response)returnresults
[docs]defembed_query(self,text:str)->List[float]:"""Compute query embeddings using a Bedrock model. Args: text: The text to embed. Returns: Embeddings for the text. """embedding=self._embedding_func(text)ifself.normalize:returnself._normalize_vector(embedding)returnembedding
[docs]asyncdefaembed_query(self,text:str)->List[float]:"""Asynchronous compute query embeddings using a Bedrock model. Args: text: The text to embed. Returns: Embeddings for the text. """returnawaitrun_in_executor(None,self.embed_query,text)
[docs]asyncdefaembed_documents(self,texts:List[str])->List[List[float]]:"""Asynchronous compute doc embeddings using a Bedrock model. Args: texts: The list of texts to embed Returns: List of embeddings, one for each text. """result=awaitasyncio.gather(*[self.aembed_query(text)fortextintexts])returnlist(result)