BedrockEmbeddings#

class langchain_community.embeddings.bedrock.BedrockEmbeddings[source]#

Bases: BaseModel, Embeddings

Deprecated since version 0.2.11: Use :class:`~langchain_aws.BedrockEmbeddings` instead. It will be removed in None==1.0.

Bedrock embedding models.

To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html

If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used.

Make sure the credentials / roles used have the required policies to access the Bedrock service.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

param client: Any = None#

Bedrock client.

param credentials_profile_name: str | None = None#

The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html

param endpoint_url: str | None = None#

Needed if you don’t want to default to us-east-1 endpoint

param model_id: str = 'amazon.titan-embed-text-v1'#

Id of the model to call, e.g., amazon.titan-embed-text-v1, this is equivalent to the modelId property in the list-foundation-models api

param model_kwargs: Dict | None = None#

Keyword arguments to pass to the model.

param normalize: bool = False#

Whether the embeddings should be normalized to unit vectors

param region_name: str | None = None#

The aws region e.g., us-west-2. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config in case it is not provided here.

async aembed_documents(texts: List[str]) β†’ List[List[float]][source]#

Asynchronous compute doc embeddings using a Bedrock model.

Parameters:

texts (List[str]) – The list of texts to embed

Returns:

List of embeddings, one for each text.

Return type:

List[List[float]]

async aembed_query(text: str) β†’ List[float][source]#

Asynchronous compute query embeddings using a Bedrock model.

Parameters:

text (str) – The text to embed.

Returns:

Embeddings for the text.

Return type:

List[float]

embed_documents(texts: List[str]) β†’ List[List[float]][source]#

Compute doc embeddings using a Bedrock model.

Parameters:

texts (List[str]) – The list of texts to embed

Returns:

List of embeddings, one for each text.

Return type:

List[List[float]]

embed_query(text: str) β†’ List[float][source]#

Compute query embeddings using a Bedrock model.

Parameters:

text (str) – The text to embed.

Returns:

Embeddings for the text.

Return type:

List[float]

Examples using BedrockEmbeddings