IpexLLMBgeEmbeddings#

class langchain_community.embeddings.ipex_llm.IpexLLMBgeEmbeddings[source]#

Bases: BaseModel, Embeddings

Wrapper around the BGE embedding model with IPEX-LLM optimizations on Intel CPUs and GPUs.

To use, you should have the ipex-llm and sentence_transformers package installed. Refer to here for installation on Intel CPU.

Example on Intel CPU:
from langchain_community.embeddings import IpexLLMBgeEmbeddings

embedding_model = IpexLLMBgeEmbeddings(
    model_name="BAAI/bge-large-en-v1.5",
    model_kwargs={},
    encode_kwargs={"normalize_embeddings": True},
)

Refer to here for installation on Intel GPU.

Example on Intel GPU:
from langchain_community.embeddings import IpexLLMBgeEmbeddings

embedding_model = IpexLLMBgeEmbeddings(
    model_name="BAAI/bge-large-en-v1.5",
    model_kwargs={"device": "xpu"},
    encode_kwargs={"normalize_embeddings": True},
)

Initialize the sentence_transformer.

param cache_folder: str | None = None#

Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.

param embed_instruction: str = ''#

Instruction to use for embedding document.

param encode_kwargs: Dict[str, Any] [Optional]#

Keyword arguments to pass when calling the encode method of the model.

param model_kwargs: Dict[str, Any] [Optional]#

Keyword arguments to pass to the model.

param model_name: str = 'BAAI/bge-small-en-v1.5'#

Model name to use.

param query_instruction: str = 'Represent this question for searching relevant passages: '#

Instruction to use for embedding query.

async aembed_documents(texts: list[str]) list[list[float]]#

Asynchronous Embed search docs.

Parameters:

texts (list[str]) – List of text to embed.

Returns:

List of embeddings.

Return type:

list[list[float]]

async aembed_query(text: str) list[float]#

Asynchronous Embed query text.

Parameters:

text (str) – Text to embed.

Returns:

Embedding.

Return type:

list[float]

embed_documents(texts: List[str]) List[List[float]][source]#

Compute doc embeddings using a HuggingFace transformer model.

Parameters:

texts (List[str]) – The list of texts to embed.

Returns:

List of embeddings, one for each text.

Return type:

List[List[float]]

embed_query(text: str) List[float][source]#

Compute query embeddings using a HuggingFace transformer model.

Parameters:

text (str) – The text to embed.

Returns:

Embeddings for the text.

Return type:

List[float]

Examples using IpexLLMBgeEmbeddings