LLMRailsEmbeddings#
- class langchain_community.embeddings.llm_rails.LLMRailsEmbeddings[source]#
Bases:
BaseModel
,Embeddings
LLMRails embedding models.
To use, you should have the environment variable
LLM_RAILS_API_KEY
set with your API key or pass it as a named parameter to the constructor.Model can be one of [“embedding-english-v1”,”embedding-multi-v1”]
Example
from langchain_community.embeddings import LLMRailsEmbeddings cohere = LLMRailsEmbeddings( model="embedding-english-v1", api_key="my-api-key" )
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param api_key: SecretStr | None = None#
LLMRails API key.
- param model: str = 'embedding-english-v1'#
Model name to use.
- async aembed_documents(texts: list[str]) list[list[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (list[str]) – List of text to embed.
- Returns:
List of embeddings.
- Return type:
list[list[float]]
- async aembed_query(text: str) list[float] #
Asynchronous Embed query text.
- Parameters:
text (str) – Text to embed.
- Returns:
Embedding.
- Return type:
list[float]
- embed_documents(texts: List[str]) List[List[float]] [source]#
Call out to Cohere’s embedding endpoint.
- Parameters:
texts (List[str]) – The list of texts to embed.
- Returns:
List of embeddings, one for each text.
- Return type:
List[List[float]]
Examples using LLMRailsEmbeddings