TensorflowHubEmbeddings#
- class langchain_community.embeddings.tensorflow_hub.TensorflowHubEmbeddings[source]#
Bases:
BaseModel
,Embeddings
TensorflowHub embedding models.
To use, you should have the
tensorflow_text
python package installed.Example
from langchain_community.embeddings import TensorflowHubEmbeddings url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3" tf = TensorflowHubEmbeddings(model_url=url)
Initialize the tensorflow_hub and tensorflow_text.
- param model_url: str = 'https://tfhub.dev/google/universal-sentence-encoder-multilingual/3'#
Model name to use.
- async aembed_documents(texts: list[str]) list[list[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (list[str]) – List of text to embed.
- Returns:
List of embeddings.
- Return type:
list[list[float]]
- async aembed_query(text: str) list[float] #
Asynchronous Embed query text.
- Parameters:
text (str) – Text to embed.
- Returns:
Embedding.
- Return type:
list[float]
Examples using TensorflowHubEmbeddings