XinferenceEmbeddings#
- class langchain_community.embeddings.xinference.XinferenceEmbeddings(server_url: str | None = None, model_uid: str | None = None)[source]#
Xinference embedding models.
To use, you should have the xinference library installed:
pip install xinference
If youβre simply using the services provided by Xinference, you can utilize the xinference_client package:
pip install xinference_client
Check out: xorbitsai/inference To run, you need to start a Xinference supervisor on one server and Xinference workers on the other servers.
Example
To start a local instance of Xinference, run
$ xinference
You can also deploy Xinference in a distributed cluster. Here are the steps:
Starting the supervisor:
$ xinference-supervisor
If youβre simply using the services provided by Xinference, you can utilize the xinference_client package:
pip install xinference_client
Starting the worker:
$ xinference-worker
Then, launch a model using command line interface (CLI).
Example:
$ xinference launch -n orca -s 3 -q q4_0
It will return a model UID. Then you can use Xinference Embedding with LangChain.
Example:
from langchain_community.embeddings import XinferenceEmbeddings xinference = XinferenceEmbeddings( server_url="http://0.0.0.0:9997", model_uid = {model_uid} # replace model_uid with the model UID return from launching the model )
Attributes
Methods
__init__
([server_url,Β model_uid])aembed_documents
(texts)Asynchronous Embed search docs.
aembed_query
(text)Asynchronous Embed query text.
embed_documents
(texts)Embed a list of documents using Xinference.
embed_query
(text)Embed a query of documents using Xinference.
- Parameters:
server_url (str | None)
model_uid (str | None)
- __init__(server_url: str | None = None, model_uid: str | None = None)[source]#
- Parameters:
server_url (str | None)
model_uid (str | None)
- async aembed_documents(texts: list[str]) list[list[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (list[str]) β List of text to embed.
- Returns:
List of embeddings.
- Return type:
list[list[float]]
- async aembed_query(text: str) list[float] #
Asynchronous Embed query text.
- Parameters:
text (str) β Text to embed.
- Returns:
Embedding.
- Return type:
list[float]
Examples using XinferenceEmbeddings