LocalAIEmbeddings#
- class langchain_community.embeddings.localai.LocalAIEmbeddings[source]#
Bases:
BaseModel
,Embeddings
LocalAI embedding models.
Since LocalAI and OpenAI have 1:1 compatibility between APIs, this class uses the
openai
Python package’sopenai.Embedding
as its client. Thus, you should have theopenai
python package installed, and defeat the environment variableOPENAI_API_KEY
by setting to a random string. You also need to specifyOPENAI_API_BASE
to point to your LocalAI service endpoint.Example
from langchain_community.embeddings import LocalAIEmbeddings openai = LocalAIEmbeddings( openai_api_key="random-string", openai_api_base="http://localhost:8080" )
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param allowed_special: Literal['all'] | Set[str] = {}#
- param chunk_size: int = 1000#
Maximum number of texts to embed in each batch
- param deployment: str = 'text-embedding-ada-002'#
- param disallowed_special: Literal['all'] | Set[str] | Sequence[str] = 'all'#
- param embedding_ctx_length: int = 8191#
The maximum number of tokens to embed at once.
- param headers: Any = None#
- param max_retries: int = 6#
Maximum number of retries to make when generating.
- param model: str = 'text-embedding-ada-002'#
- param model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not explicitly specified.
- param openai_api_base: str | None = None#
- param openai_api_key: str | None = None#
- param openai_api_version: str | None = None#
- param openai_organization: str | None = None#
- param openai_proxy: str | None = None#
- param request_timeout: float | Tuple[float, float] | None = None#
Timeout in seconds for the LocalAI request.
- param show_progress_bar: bool = False#
Whether to show a progress bar when embedding.
- async aembed_documents(texts: List[str], chunk_size: int | None = 0) List[List[float]] [source]#
Call out to LocalAI’s embedding endpoint async for embedding search docs.
- Parameters:
texts (List[str]) – The list of texts to embed.
chunk_size (int | None) – The chunk size of embeddings. If None, will use the chunk size specified by the class.
- Returns:
List of embeddings, one for each text.
- Return type:
List[List[float]]
- async aembed_query(text: str) List[float] [source]#
Call out to LocalAI’s embedding endpoint async for embedding query text.
- Parameters:
text (str) – The text to embed.
- Returns:
Embedding for the text.
- Return type:
List[float]
- embed_documents(texts: List[str], chunk_size: int | None = 0) List[List[float]] [source]#
Call out to LocalAI’s embedding endpoint for embedding search docs.
- Parameters:
texts (List[str]) – The list of texts to embed.
chunk_size (int | None) – The chunk size of embeddings. If None, will use the chunk size specified by the class.
- Returns:
List of embeddings, one for each text.
- Return type:
List[List[float]]
Examples using LocalAIEmbeddings