Source code for langchain_community.embeddings.localai

from __future__ import annotations

import logging
import warnings
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Literal,
    Optional,
    Sequence,
    Set,
    Tuple,
    Union,
)

from langchain_core.embeddings import Embeddings
from langchain_core.utils import (
    get_from_dict_or_env,
    get_pydantic_field_names,
    pre_init,
)
from pydantic import BaseModel, ConfigDict, Field, model_validator
from tenacity import (
    AsyncRetrying,
    before_sleep_log,
    retry,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential,
)

logger = logging.getLogger(__name__)


def _create_retry_decorator(embeddings: LocalAIEmbeddings) -> Callable[[Any], Any]:
    import openai

    min_seconds = 4
    max_seconds = 10
    # Wait 2^x * 1 second between each retry starting with
    # 4 seconds, then up to 10 seconds, then 10 seconds afterwards
    return retry(
        reraise=True,
        stop=stop_after_attempt(embeddings.max_retries),
        wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
        retry=(
            retry_if_exception_type(openai.error.Timeout)  # type: ignore[attr-defined]
            | retry_if_exception_type(openai.error.APIError)  # type: ignore[attr-defined]
            | retry_if_exception_type(openai.error.APIConnectionError)  # type: ignore[attr-defined]
            | retry_if_exception_type(openai.error.RateLimitError)  # type: ignore[attr-defined]
            | retry_if_exception_type(openai.error.ServiceUnavailableError)  # type: ignore[attr-defined]
        ),
        before_sleep=before_sleep_log(logger, logging.WARNING),
    )


def _async_retry_decorator(embeddings: LocalAIEmbeddings) -> Any:
    import openai

    min_seconds = 4
    max_seconds = 10
    # Wait 2^x * 1 second between each retry starting with
    # 4 seconds, then up to 10 seconds, then 10 seconds afterwards
    async_retrying = AsyncRetrying(
        reraise=True,
        stop=stop_after_attempt(embeddings.max_retries),
        wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
        retry=(
            retry_if_exception_type(openai.error.Timeout)  # type: ignore[attr-defined]
            | retry_if_exception_type(openai.error.APIError)  # type: ignore[attr-defined]
            | retry_if_exception_type(openai.error.APIConnectionError)  # type: ignore[attr-defined]
            | retry_if_exception_type(openai.error.RateLimitError)  # type: ignore[attr-defined]
            | retry_if_exception_type(openai.error.ServiceUnavailableError)  # type: ignore[attr-defined]
        ),
        before_sleep=before_sleep_log(logger, logging.WARNING),
    )

    def wrap(func: Callable) -> Callable:
        async def wrapped_f(*args: Any, **kwargs: Any) -> Callable:
            async for _ in async_retrying:
                return await func(*args, **kwargs)
            raise AssertionError("this is unreachable")

        return wrapped_f

    return wrap


# https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings
def _check_response(response: dict) -> dict:
    if any(len(d["embedding"]) == 1 for d in response["data"]):
        import openai

        raise openai.error.APIError("LocalAI API returned an empty embedding")  # type: ignore[attr-defined]
    return response


[docs] def embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) -> Any: """Use tenacity to retry the embedding call.""" retry_decorator = _create_retry_decorator(embeddings) @retry_decorator def _embed_with_retry(**kwargs: Any) -> Any: response = embeddings.client.create(**kwargs) return _check_response(response) return _embed_with_retry(**kwargs)
[docs] async def async_embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) -> Any: """Use tenacity to retry the embedding call.""" @_async_retry_decorator(embeddings) async def _async_embed_with_retry(**kwargs: Any) -> Any: response = await embeddings.client.acreate(**kwargs) return _check_response(response) return await _async_embed_with_retry(**kwargs)
[docs] class LocalAIEmbeddings(BaseModel, Embeddings): """LocalAI embedding models. Since LocalAI and OpenAI have 1:1 compatibility between APIs, this class uses the ``openai`` Python package's ``openai.Embedding`` as its client. Thus, you should have the ``openai`` python package installed, and defeat the environment variable ``OPENAI_API_KEY`` by setting to a random string. You also need to specify ``OPENAI_API_BASE`` to point to your LocalAI service endpoint. Example: .. code-block:: python from langchain_community.embeddings import LocalAIEmbeddings openai = LocalAIEmbeddings( openai_api_key="random-string", openai_api_base="http://localhost:8080" ) """ client: Any = None #: :meta private: model: str = "text-embedding-ada-002" deployment: str = model openai_api_version: Optional[str] = None openai_api_base: Optional[str] = None # to support explicit proxy for LocalAI openai_proxy: Optional[str] = None embedding_ctx_length: int = 8191 """The maximum number of tokens to embed at once.""" openai_api_key: Optional[str] = None openai_organization: Optional[str] = None allowed_special: Union[Literal["all"], Set[str]] = set() disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all" chunk_size: int = 1000 """Maximum number of texts to embed in each batch""" max_retries: int = 6 """Maximum number of retries to make when generating.""" request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout in seconds for the LocalAI request.""" headers: Any = None show_progress_bar: bool = False """Whether to show a progress bar when embedding.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" model_config = ConfigDict(extra="forbid", protected_namespaces=()) @model_validator(mode="before") @classmethod def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: warnings.warn( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values
[docs] @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) default_api_version = "" values["openai_api_version"] = get_from_dict_or_env( values, "openai_api_version", "OPENAI_API_VERSION", default=default_api_version, ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai values["client"] = openai.Embedding # type: ignore[attr-defined] except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) return values
@property def _invocation_params(self) -> Dict: openai_args = { "model": self.model, "request_timeout": self.request_timeout, "headers": self.headers, "api_key": self.openai_api_key, "organization": self.openai_organization, "api_base": self.openai_api_base, "api_version": self.openai_api_version, **self.model_kwargs, } if self.openai_proxy: import openai openai.proxy = { # type: ignore[attr-defined] "http": self.openai_proxy, "https": self.openai_proxy, } # type: ignore[assignment] return openai_args def _embedding_func(self, text: str, *, engine: str) -> List[float]: """Call out to LocalAI's embedding endpoint.""" # handle large input text if self.model.endswith("001"): # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500 # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") return embed_with_retry( self, input=[text], **self._invocation_params, )["data"][0]["embedding"] async def _aembedding_func(self, text: str, *, engine: str) -> List[float]: """Call out to LocalAI's embedding endpoint.""" # handle large input text if self.model.endswith("001"): # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500 # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") return ( await async_embed_with_retry( self, input=[text], **self._invocation_params, ) )["data"][0]["embedding"]
[docs] def embed_documents( self, texts: List[str], chunk_size: Optional[int] = 0 ) -> List[List[float]]: """Call out to LocalAI's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. chunk_size: The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ # call _embedding_func for each text return [self._embedding_func(text, engine=self.deployment) for text in texts]
[docs] async def aembed_documents( self, texts: List[str], chunk_size: Optional[int] = 0 ) -> List[List[float]]: """Call out to LocalAI's embedding endpoint async for embedding search docs. Args: texts: The list of texts to embed. chunk_size: The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ embeddings = [] for text in texts: response = await self._aembedding_func(text, engine=self.deployment) embeddings.append(response) return embeddings
[docs] def embed_query(self, text: str) -> List[float]: """Call out to LocalAI's embedding endpoint for embedding query text. Args: text: The text to embed. Returns: Embedding for the text. """ embedding = self._embedding_func(text, engine=self.deployment) return embedding
[docs] async def aembed_query(self, text: str) -> List[float]: """Call out to LocalAI's embedding endpoint async for embedding query text. Args: text: The text to embed. Returns: Embedding for the text. """ embedding = await self._aembedding_func(text, engine=self.deployment) return embedding