OpenVINOBgeEmbeddings#
- class langchain_community.embeddings.openvino.OpenVINOBgeEmbeddings[source]#
Bases:
OpenVINOEmbeddings
OpenVNO BGE embedding models.
- Bge Example:
from langchain_community.embeddings import OpenVINOBgeEmbeddings model_name = "BAAI/bge-large-en-v1.5" model_kwargs = {'device': 'CPU'} encode_kwargs = {'normalize_embeddings': True} ov = OpenVINOBgeEmbeddings( model_name_or_path=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs )
Initialize the sentence_transformer.
- param embed_instruction: str = ''#
Instruction to use for embedding document.
- param encode_kwargs: Dict[str, Any] [Optional]#
Keyword arguments to pass when calling the encode method of the model.
- param model_kwargs: Dict[str, Any] [Optional]#
Keyword arguments to pass to the model.
- param model_name_or_path: str [Required]#
HuggingFace model id.
- param ov_model: Any = None#
OpenVINO model object.
- param query_instruction: str = 'Represent this question for searching relevant passages: '#
Instruction to use for embedding query.
- param show_progress: bool = False#
Whether to show a progress bar.
- param tokenizer: Any = None#
Tokenizer for embedding model.
- async aembed_documents(texts: list[str]) list[list[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (list[str]) – List of text to embed.
- Returns:
List of embeddings.
- Return type:
list[list[float]]
- async aembed_query(text: str) list[float] #
Asynchronous Embed query text.
- Parameters:
text (str) – Text to embed.
- Returns:
Embedding.
- Return type:
list[float]
- embed_documents(texts: List[str]) List[List[float]] [source]#
Compute doc embeddings using a HuggingFace transformer model.
- Parameters:
texts (List[str]) – The list of texts to embed.
- Returns:
List of embeddings, one for each text.
- Return type:
List[List[float]]
- embed_query(text: str) List[float] [source]#
Compute query embeddings using a HuggingFace transformer model.
- Parameters:
text (str) – The text to embed.
- Returns:
Embeddings for the text.
- Return type:
List[float]
- encode(sentences: Any, batch_size: int = 4, show_progress_bar: bool = False, convert_to_numpy: bool = True, convert_to_tensor: bool = False, mean_pooling: bool = False, normalize_embeddings: bool = True) Any #
Computes sentence embeddings.
- Parameters:
sentences (Any) – the sentences to embed.
batch_size (int) – the batch size used for the computation.
show_progress_bar (bool) – Whether to output a progress bar.
convert_to_numpy (bool) – Whether the output should be a list of numpy vectors.
convert_to_tensor (bool) – Whether the output should be one large tensor.
mean_pooling (bool) – Whether to pool returned vectors.
normalize_embeddings (bool) – Whether to normalize returned vectors.
- Returns:
By default, a 2d numpy array with shape [num_inputs, output_dimension].
- Return type:
Any
- save_model(model_path: str) bool #
- Parameters:
model_path (str)
- Return type:
bool
Examples using OpenVINOBgeEmbeddings