FastEmbedEmbeddings#
- class langchain_community.embeddings.fastembed.FastEmbedEmbeddings[source]#
Bases:
BaseModel
,Embeddings
Qdrant FastEmbedding models.
FastEmbed is a lightweight, fast, Python library built for embedding generation. See more documentation at: * qdrant/fastembed * https://qdrant.github.io/fastembed/
To use this class, you must install the fastembed Python package.
pip install fastembed .. rubric:: Example
from langchain_community.embeddings import FastEmbedEmbeddings fastembed = FastEmbedEmbeddings()
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param batch_size: int = 256#
Batch size for encoding. Higher values will use more memory, but be faster. Defaults to 256.
- param cache_dir: str | None = None#
The path to the cache directory. Defaults to local_cache in the parent directory
- param doc_embed_type: Literal['default', 'passage'] = 'default'#
Type of embedding to use for documents The available options are: βdefaultβ and βpassageβ
- param max_length: int = 512#
The maximum number of tokens. Defaults to 512. Unknown behavior for values > 512.
- param model: Any = None#
- param model_name: str = 'BAAI/bge-small-en-v1.5'#
Name of the FastEmbedding model to use Defaults to βBAAI/bge-small-en-v1.5β Find the list of supported models at https://qdrant.github.io/fastembed/examples/Supported_Models/
- param parallel: int | None = None#
If >1, parallel encoding is used, recommended for encoding of large datasets. If 0, use all available cores. If None, donβt use data-parallel processing, use default onnxruntime threading. Defaults to None.
- param threads: int | None = None#
The number of threads single onnxruntime session can use. Defaults to None
- async aembed_documents(texts: list[str]) list[list[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (list[str]) β List of text to embed.
- Returns:
List of embeddings.
- Return type:
list[list[float]]
- async aembed_query(text: str) list[float] #
Asynchronous Embed query text.
- Parameters:
text (str) β Text to embed.
- Returns:
Embedding.
- Return type:
list[float]
- embed_documents(texts: List[str]) List[List[float]] [source]#
Generate embeddings for documents using FastEmbed.
- Parameters:
texts (List[str]) β The list of texts to embed.
- Returns:
List of embeddings, one for each text.
- Return type:
List[List[float]]
Examples using FastEmbedEmbeddings