Source code for langchain_community.embeddings.fastembed
import importlib
import importlib.metadata
from typing import Any, Dict, List, Literal, Optional
import numpy as np
from langchain_core.embeddings import Embeddings
from langchain_core.utils import pre_init
from pydantic import BaseModel, ConfigDict
MIN_VERSION = "0.2.0"
[docs]
class FastEmbedEmbeddings(BaseModel, Embeddings):
"""Qdrant FastEmbedding models.
FastEmbed is a lightweight, fast, Python library built for embedding generation.
See more documentation at:
* https://github.com/qdrant/fastembed/
* https://qdrant.github.io/fastembed/
To use this class, you must install the `fastembed` Python package.
`pip install fastembed`
Example:
from langchain_community.embeddings import FastEmbedEmbeddings
fastembed = FastEmbedEmbeddings()
"""
model_name: str = "BAAI/bge-small-en-v1.5"
"""Name of the FastEmbedding model to use
Defaults to "BAAI/bge-small-en-v1.5"
Find the list of supported models at
https://qdrant.github.io/fastembed/examples/Supported_Models/
"""
max_length: int = 512
"""The maximum number of tokens. Defaults to 512.
Unknown behavior for values > 512.
"""
cache_dir: Optional[str] = None
"""The path to the cache directory.
Defaults to `local_cache` in the parent directory
"""
threads: Optional[int] = None
"""The number of threads single onnxruntime session can use.
Defaults to None
"""
doc_embed_type: Literal["default", "passage"] = "default"
"""Type of embedding to use for documents
The available options are: "default" and "passage"
"""
batch_size: int = 256
"""Batch size for encoding. Higher values will use more memory, but be faster.
Defaults to 256.
"""
parallel: Optional[int] = None
"""If `>1`, parallel encoding is used, recommended for encoding of large datasets.
If `0`, use all available cores.
If `None`, don't use data-parallel processing, use default onnxruntime threading.
Defaults to `None`.
"""
model: Any = None # : :meta private:
model_config = ConfigDict(extra="allow", protected_namespaces=())
[docs]
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that FastEmbed has been installed."""
model_name = values.get("model_name")
max_length = values.get("max_length")
cache_dir = values.get("cache_dir")
threads = values.get("threads")
try:
fastembed = importlib.import_module("fastembed")
except ModuleNotFoundError:
raise ImportError(
"Could not import 'fastembed' Python package. "
"Please install it with `pip install fastembed`."
)
if importlib.metadata.version("fastembed") < MIN_VERSION:
raise ImportError(
'FastEmbedEmbeddings requires `pip install -U "fastembed>=0.2.0"`.'
)
values["model"] = fastembed.TextEmbedding(
model_name=model_name,
max_length=max_length,
cache_dir=cache_dir,
threads=threads,
)
return values
[docs]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Generate embeddings for documents using FastEmbed.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings: List[np.ndarray]
if self.doc_embed_type == "passage":
embeddings = self.model.passage_embed(
texts, batch_size=self.batch_size, parallel=self.parallel
)
else:
embeddings = self.model.embed(
texts, batch_size=self.batch_size, parallel=self.parallel
)
return [e.tolist() for e in embeddings]
[docs]
def embed_query(self, text: str) -> List[float]:
"""Generate query embeddings using FastEmbed.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
query_embeddings: np.ndarray = next(
self.model.query_embed(
text, batch_size=self.batch_size, parallel=self.parallel
)
)
return query_embeddings.tolist()