HuggingFaceInferenceAPIEmbeddings#
- class langchain_community.embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings[source]#
Bases:
BaseModel
,Embeddings
Embed texts using the HuggingFace API.
Requires a HuggingFace Inference API key and a model name.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param additional_headers: Dict[str, str] = {}#
Pass additional headers to the requests library if needed.
- param api_key: SecretStr [Required]#
Your API key for the HuggingFace Inference API.
- param api_url: str | None = None#
Custom inference endpoint url. None for using default public url.
- param model_name: str = 'sentence-transformers/all-MiniLM-L6-v2'#
The name of the model to use for text embeddings.
- async aembed_documents(texts: list[str]) list[list[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (list[str]) – List of text to embed.
- Returns:
List of embeddings.
- Return type:
list[list[float]]
- async aembed_query(text: str) list[float] #
Asynchronous Embed query text.
- Parameters:
text (str) – Text to embed.
- Returns:
Embedding.
- Return type:
list[float]
- embed_documents(texts: List[str]) List[List[float]] [source]#
Get the embeddings for a list of texts.
- Parameters:
texts (Documents) – A list of texts to get embeddings for.
- Returns:
- Embedded texts as List[List[float]], where each inner List[float]
corresponds to a single input text.
- Return type:
List[List[float]]
Example
from langchain_community.embeddings import ( HuggingFaceInferenceAPIEmbeddings, ) hf_embeddings = HuggingFaceInferenceAPIEmbeddings( api_key="your_api_key", model_name="sentence-transformers/all-MiniLM-l6-v2" ) texts = ["Hello, world!", "How are you?"] hf_embeddings.embed_documents(texts)
Examples using HuggingFaceInferenceAPIEmbeddings