PremAIEmbeddings#
- class langchain_community.embeddings.premai.PremAIEmbeddings[source]#
Bases:
BaseModel
,Embeddings
Premβs Embedding APIs
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param client: Any [Required]#
- param max_retries: int = 1#
Max number of retries for tenacity
- param model: str [Required]#
The Embedding model to choose from
- param premai_api_key: SecretStr | None = None#
Prem AI API Key. Get it here: https://app.premai.io/api_keys/
- param project_id: int [Required]#
The project ID in which the experiments or deployments are carried out. You can find all your projects here: https://app.premai.io/projects/
- param show_progress_bar: bool = False#
Whether to show a tqdm progress bar. Must have tqdm installed.
- async aembed_documents(texts: list[str]) list[list[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (list[str]) β List of text to embed.
- Returns:
List of embeddings.
- Return type:
list[list[float]]
- async aembed_query(text: str) list[float] #
Asynchronous Embed query text.
- Parameters:
text (str) β Text to embed.
- Returns:
Embedding.
- Return type:
list[float]
- embed_documents(texts: List[str]) List[List[float]] [source]#
Embed search docs.
- Parameters:
texts (List[str]) β List of text to embed.
- Returns:
List of embeddings.
- Return type:
List[List[float]]
Examples using PremAIEmbeddings