BaichuanTextEmbeddings#
- class langchain_community.embeddings.baichuan.BaichuanTextEmbeddings[source]#
Bases:
BaseModel
,Embeddings
Baichuan Text Embedding models.
- Setup:
To use, you should set the environment variable
BAICHUAN_API_KEY
to your API key or pass it as a named parameter to the constructor.export BAICHUAN_API_KEY="your-api-key"
- Instantiate:
from langchain_community.embeddings import BaichuanTextEmbeddings embeddings = BaichuanTextEmbeddings()
- Embed:
# embed the documents vectors = embeddings.embed_documents([text1, text2, ...]) # embed the query vectors = embeddings.embed_query(text)
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param baichuan_api_key: SecretStr [Optional] (alias 'api_key')#
Automatically inferred from env var BAICHUAN_API_KEY if not provided.
- param chunk_size: int = 16#
Chunk size when multiple texts are input
- param model_name: str = 'Baichuan-Text-Embedding' (alias 'model')#
The model used to embed the documents.
- async aembed_documents(texts: list[str]) list[list[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (list[str]) – List of text to embed.
- Returns:
List of embeddings.
- Return type:
list[list[float]]
- async aembed_query(text: str) list[float] #
Asynchronous Embed query text.
- Parameters:
text (str) – Text to embed.
- Returns:
Embedding.
- Return type:
list[float]
- embed_documents(texts: List[str]) List[List[float]] | None [source]#
Public method to get embeddings for a list of documents.
- Parameters:
texts (List[str]) – The list of texts to embed.
- Returns:
A list of embeddings, one for each text, or None if an error occurs.
- Return type:
List[List[float]] | None
Examples using BaichuanTextEmbeddings