HuggingFaceInstructEmbeddings#
- class langchain_community.embeddings.huggingface.HuggingFaceInstructEmbeddings[source]#
Bases:
BaseModel
,Embeddings
Wrapper around sentence_transformers embedding models.
To use, you should have the
sentence_transformers
andInstructorEmbedding
python packages installed.Example
from langchain_community.embeddings import HuggingFaceInstructEmbeddings model_name = "hkunlp/instructor-large" model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': True} hf = HuggingFaceInstructEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs )
Initialize the sentence_transformer.
- param cache_folder: str | None = None#
Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.
- param embed_instruction: str = 'Represent the document for retrieval: '#
Instruction to use for embedding documents.
- param encode_kwargs: Dict[str, Any] [Optional]#
Keyword arguments to pass when calling the encode method of the model.
- param model_kwargs: Dict[str, Any] [Optional]#
Keyword arguments to pass to the model.
- param model_name: str = 'hkunlp/instructor-large'#
Model name to use.
- param query_instruction: str = 'Represent the question for retrieving supporting documents: '#
Instruction to use for embedding query.
- param show_progress: bool = False#
Whether to show a progress bar.
- async aembed_documents(texts: list[str]) list[list[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (list[str]) – List of text to embed.
- Returns:
List of embeddings.
- Return type:
list[list[float]]
- async aembed_query(text: str) list[float] #
Asynchronous Embed query text.
- Parameters:
text (str) – Text to embed.
- Returns:
Embedding.
- Return type:
list[float]
Examples using HuggingFaceInstructEmbeddings