QianfanEmbeddingsEndpoint#
- class langchain_community.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint[source]#
Bases:
BaseModel
,Embeddings
Baidu Qianfan Embeddings embedding models.
- Setup:
To use, you should have the
qianfan
python package installed, and set environment variablesQIANFAN_AK
,QIANFAN_SK
.pip install qianfan export QIANFAN_AK="your-api-key" export QIANFAN_SK="your-secret_key"
- Instantiate:
from langchain_community.embeddings import QianfanEmbeddingsEndpoint embeddings = QianfanEmbeddingsEndpoint()
- Embed:
# embed the documents vectors = embeddings.embed_documents([text1, text2, ...]) # embed the query vectors = embeddings.embed_query(text) # embed the documents with async vectors = await embeddings.aembed_documents([text1, text2, ...]) # embed the query with async vectors = await embeddings.aembed_query(text)
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param chunk_size: int = 16#
Chunk size when multiple texts are input
- param client: Any = None#
Qianfan client
- param endpoint: str = ''#
Endpoint of the Qianfan Embedding, required if custom model used.
- param init_kwargs: Dict[str, Any] [Optional]#
init kwargs for qianfan client init, such as query_per_second which is associated with qianfan resource object to limit QPS
- param model: str | None = None#
Model name you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu
for now, we support Embedding-V1 and - Embedding-V1 ๏ผ้ป่ฎคๆจกๅ๏ผ - bge-large-en - bge-large-zh
preset models are mapping to an endpoint. model will be ignored if endpoint is set
- param model_kwargs: Dict[str, Any] [Optional]#
extra params for model invoke using with do.
- param qianfan_ak: SecretStr | None = None (alias 'api_key')#
Qianfan application apikey
- param qianfan_sk: SecretStr | None = None (alias 'secret_key')#
Qianfan application secretkey
- async aembed_documents(texts: List[str]) List[List[float]] [source]#
Asynchronous Embed search docs.
- Parameters:
texts (List[str]) โ List of text to embed.
- Returns:
List of embeddings.
- Return type:
List[List[float]]
- async aembed_query(text: str) List[float] [source]#
Asynchronous Embed query text.
- Parameters:
text (str) โ Text to embed.
- Returns:
Embedding.
- Return type:
List[float]
- embed_documents(texts: List[str]) List[List[float]] [source]#
Embeds a list of text documents using the AutoVOT algorithm.
- Parameters:
texts (List[str]) โ A list of text documents to embed.
- Returns:
- A list of embeddings for each document in the input list.
Each embedding is represented as a list of float values.
- Return type:
List[List[float]]
- embed_query(text: str) List[float] [source]#
Embed query text.
- Parameters:
text (str) โ Text to embed.
- Returns:
Embedding.
- Return type:
List[float]
- classmethod validate_environment(values: Dict) Dict [source]#
Validate whether qianfan_ak and qianfan_sk in the environment variables or configuration file are available or not.
init qianfan embedding client with ak, sk, model, endpoint
- Parameters:
values (Dict) โ a dictionary containing configuration information, must include the
qianfan_sk (fields of qianfan_ak and)
- Returns:
a dictionary containing configuration information. If qianfan_ak and qianfan_sk are not provided in the environment variables or configuration file,the original values will be returned; otherwise, values containing qianfan_ak and qianfan_sk will be returned.
- Raises:
ValueError โ qianfan package not found, please install it with `pip install
qianfan` โ
- Return type:
Dict
Examples using QianfanEmbeddingsEndpoint