EdenAiEmbeddings#
- class langchain_community.embeddings.edenai.EdenAiEmbeddings[source]#
Bases:
BaseModel
,Embeddings
EdenAI embedding. environment variable
EDENAI_API_KEY
set with your API key, or pass it as a named parameter.Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param edenai_api_key: SecretStr | None = None#
EdenAI API Token
- param model: str | None = None#
model name for above provider (eg: ‘gpt-3.5-turbo-instruct’ for openai) available models are shown on https://docs.edenai.co/ under ‘available providers’
- param provider: str = 'openai'#
embedding provider to use (eg: openai,google etc.)
- async aembed_documents(texts: list[str]) list[list[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (list[str]) – List of text to embed.
- Returns:
List of embeddings.
- Return type:
list[list[float]]
- async aembed_query(text: str) list[float] #
Asynchronous Embed query text.
- Parameters:
text (str) – Text to embed.
- Returns:
Embedding.
- Return type:
list[float]
- embed_documents(texts: List[str]) List[List[float]] [source]#
Embed a list of documents using EdenAI.
- Parameters:
texts (List[str]) – The list of texts to embed.
- Returns:
List of embeddings, one for each text.
- Return type:
List[List[float]]
Examples using EdenAiEmbeddings