import os
from typing import List, Literal, Optional, overload
import nomic # type: ignore[import]
from langchain_core.embeddings import Embeddings
from nomic import embed
[docs]
class NomicEmbeddings(Embeddings):
"""NomicEmbeddings embedding model.
Example:
.. code-block:: python
from langchain_nomic import NomicEmbeddings
model = NomicEmbeddings()
"""
@overload
def __init__(
self,
*,
model: str,
nomic_api_key: Optional[str] = ...,
dimensionality: Optional[int] = ...,
inference_mode: Literal["remote"] = ...,
):
...
@overload
def __init__(
self,
*,
model: str,
nomic_api_key: Optional[str] = ...,
dimensionality: Optional[int] = ...,
inference_mode: Literal["local", "dynamic"],
device: Optional[str] = ...,
):
...
@overload
def __init__(
self,
*,
model: str,
nomic_api_key: Optional[str] = ...,
dimensionality: Optional[int] = ...,
inference_mode: str,
device: Optional[str] = ...,
):
...
[docs]
def __init__(
self,
*,
model: str,
nomic_api_key: Optional[str] = None,
dimensionality: Optional[int] = None,
inference_mode: str = "remote",
device: Optional[str] = None,
vision_model: Optional[str] = None,
):
"""Initialize NomicEmbeddings model.
Args:
model: model name
nomic_api_key: optionally, set the Nomic API key. Uses the NOMIC_API_KEY
environment variable by default.
dimensionality: The embedding dimension, for use with Matryoshka-capable
models. Defaults to full-size.
inference_mode: How to generate embeddings. One of `remote`, `local`
(Embed4All), or `dynamic` (automatic). Defaults to `remote`.
device: The device to use for local embeddings. Choices include
`cpu`, `gpu`, `nvidia`, `amd`, or a specific device name. See
the docstring for `GPT4All.__init__` for more info. Typically
defaults to CPU. Do not use on macOS.
"""
_api_key = nomic_api_key or os.environ.get("NOMIC_API_KEY")
if _api_key:
nomic.login(_api_key)
self.model = model
self.dimensionality = dimensionality
self.inference_mode = inference_mode
self.device = device
self.vision_model = vision_model
[docs]
def embed(self, texts: List[str], *, task_type: str) -> List[List[float]]:
"""Embed texts.
Args:
texts: list of texts to embed
task_type: the task type to use when embedding. One of `search_query`,
`search_document`, `classification`, `clustering`
"""
output = embed.text(
texts=texts,
model=self.model,
task_type=task_type,
dimensionality=self.dimensionality,
inference_mode=self.inference_mode,
device=self.device,
)
return output["embeddings"]
[docs]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs.
Args:
texts: list of texts to embed as documents
"""
return self.embed(
texts=texts,
task_type="search_document",
)
[docs]
def embed_query(self, text: str) -> List[float]:
"""Embed query text.
Args:
text: query text
"""
return self.embed(
texts=[text],
task_type="search_query",
)[0]
[docs]
def embed_image(self, uris: List[str]) -> List[List[float]]:
return embed.image(
images=uris,
model=self.vision_model,
)["embeddings"]