NomicEmbeddings#
- class langchain_nomic.embeddings.NomicEmbeddings(*, model: str, nomic_api_key: str | None = ..., dimensionality: int | None = ..., inference_mode: Literal['remote'] = ...)[source]#
- class langchain_nomic.embeddings.NomicEmbeddings(*, model: str, nomic_api_key: str | None = ..., dimensionality: int | None = ..., inference_mode: Literal['local', 'dynamic'], device: str | None = ...)
- class langchain_nomic.embeddings.NomicEmbeddings(*, model: str, nomic_api_key: str | None = ..., dimensionality: int | None = ..., inference_mode: str, device: str | None = ...)
NomicEmbeddings embedding model.
Example
from langchain_nomic import NomicEmbeddings model = NomicEmbeddings()
Initialize NomicEmbeddings model.
- Parameters:
model (str) β model name
nomic_api_key (str | None) β optionally, set the Nomic API key. Uses the NOMIC_API_KEY environment variable by default.
dimensionality (int | None) β The embedding dimension, for use with Matryoshka-capable models. Defaults to full-size.
inference_mode (str) β How to generate embeddings. One of remote, local (Embed4All), or dynamic (automatic). Defaults to remote.
device (str | None) β The device to use for local embeddings. Choices include cpu, gpu, nvidia, amd, or a specific device name. See the docstring for GPT4All.__init__ for more info. Typically defaults to CPU. Do not use on macOS.
vision_model (str | None)
Methods
__init__
()Initialize NomicEmbeddings model.
aembed_documents
(texts)Asynchronous Embed search docs.
aembed_query
(text)Asynchronous Embed query text.
embed
(texts,Β *,Β task_type)Embed texts.
embed_documents
(texts)Embed search docs.
embed_image
(uris)embed_query
(text)Embed query text.
- __init__(*, model: str, nomic_api_key: str | None = None, dimensionality: int | None = None, inference_mode: Literal['remote'] = 'remote')[source]#
- __init__(*, model: str, nomic_api_key: str | None = None, dimensionality: int | None = None, inference_mode: Literal['local', 'dynamic'], device: str | None = None)
- __init__(*, model: str, nomic_api_key: str | None = None, dimensionality: int | None = None, inference_mode: str, device: str | None = None)
Initialize NomicEmbeddings model.
- Parameters:
model β model name
nomic_api_key β optionally, set the Nomic API key. Uses the NOMIC_API_KEY environment variable by default.
dimensionality β The embedding dimension, for use with Matryoshka-capable models. Defaults to full-size.
inference_mode β How to generate embeddings. One of remote, local (Embed4All), or dynamic (automatic). Defaults to remote.
device β The device to use for local embeddings. Choices include cpu, gpu, nvidia, amd, or a specific device name. See the docstring for GPT4All.__init__ for more info. Typically defaults to CPU. Do not use on macOS.
- async aembed_documents(texts: list[str]) list[list[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (list[str]) β List of text to embed.
- Returns:
List of embeddings.
- Return type:
list[list[float]]
- async aembed_query(text: str) list[float] #
Asynchronous Embed query text.
- Parameters:
text (str) β Text to embed.
- Returns:
Embedding.
- Return type:
list[float]
- embed(texts: List[str], *, task_type: str) List[List[float]] [source]#
Embed texts.
- Parameters:
texts (List[str]) β list of texts to embed
task_type (str) β the task type to use when embedding. One of search_query, search_document, classification, clustering
- Return type:
List[List[float]]
- embed_documents(texts: List[str]) List[List[float]] [source]#
Embed search docs.
- Parameters:
texts (List[str]) β list of texts to embed as documents
- Return type:
List[List[float]]