ZepChatMessageHistory#
- class langchain_community.chat_message_histories.zep.ZepChatMessageHistory(session_id: str, url: str = 'http://localhost:8000', api_key: str | None = None)[source]#
Chat message history that uses Zep as a backend.
Recommended usage:
# Set up Zep Chat History zep_chat_history = ZepChatMessageHistory( session_id=session_id, url=ZEP_API_URL, api_key=<your_api_key>, ) # Use a standard ConversationBufferMemory to encapsulate the Zep chat history memory = ConversationBufferMemory( memory_key="chat_history", chat_memory=zep_chat_history )
Zep provides long-term conversation storage for LLM apps. The server stores, summarizes, embeds, indexes, and enriches conversational AI chat histories, and exposes them via simple, low-latency APIs.
For server installation instructions and more, see: https://docs.getzep.com/deployment/quickstart/
This class is a thin wrapper around the zep-python package. Additional Zep functionality is exposed via the zep_summary and zep_messages properties.
For more information on the zep-python package, see: getzep/zep-python
Attributes
messages
Retrieve messages from Zep memory
zep_messages
Retrieve summary from Zep memory
zep_summary
Retrieve summary from Zep memory
Methods
__init__
(session_id[, url, api_key])aadd_messages
(messages)Append the messages to the Zep memory history asynchronously
aclear
()Clear session memory from Zep asynchronously.
add_ai_message
(message[, metadata])Convenience method for adding an AI message string to the store.
add_message
(message[, metadata])Append the message to the Zep memory history
add_messages
(messages)Append the messages to the Zep memory history
add_user_message
(message[, metadata])Convenience method for adding a human message string to the store.
Async version of getting messages.
clear
()Clear session memory from Zep.
search
(query[, metadata, search_scope, ...])Search Zep memory for messages matching the query
- Parameters:
session_id (str)
url (str)
api_key (Optional[str])
- __init__(session_id: str, url: str = 'http://localhost:8000', api_key: str | None = None) None [source]#
- Parameters:
session_id (str)
url (str)
api_key (str | None)
- Return type:
None
- async aadd_messages(messages: Sequence[BaseMessage]) None [source]#
Append the messages to the Zep memory history asynchronously
- Parameters:
messages (Sequence[BaseMessage])
- Return type:
None
- async aclear() None [source]#
Clear session memory from Zep asynchronously. Note that Zep is long-term storage for memory and this is not advised unless you have specific data retention requirements.
- Return type:
None
- add_ai_message(message: str, metadata: Dict[str, Any] | None = None) None [source]#
Convenience method for adding an AI message string to the store.
- Parameters:
message (str) – The string contents of an AI message.
metadata (Dict[str, Any] | None) – Optional metadata to attach to the message.
- Return type:
None
- add_message(message: BaseMessage, metadata: Dict[str, Any] | None = None) None [source]#
Append the message to the Zep memory history
- Parameters:
message (BaseMessage)
metadata (Dict[str, Any] | None)
- Return type:
None
- add_messages(messages: Sequence[BaseMessage]) None [source]#
Append the messages to the Zep memory history
- Parameters:
messages (Sequence[BaseMessage])
- Return type:
None
- add_user_message(message: str, metadata: Dict[str, Any] | None = None) None [source]#
Convenience method for adding a human message string to the store.
- Parameters:
message (str) – The string contents of a human message.
metadata (Dict[str, Any] | None) – Optional metadata to attach to the message.
- Return type:
None
- async aget_messages() list[BaseMessage] #
Async version of getting messages.
Can over-ride this method to provide an efficient async implementation.
In general, fetching messages may involve IO to the underlying persistence layer.
- Return type:
list[BaseMessage]
- clear() None [source]#
Clear session memory from Zep. Note that Zep is long-term storage for memory and this is not advised unless you have specific data retention requirements.
- Return type:
None
- search(query: str, metadata: Dict | None = None, search_scope: SearchScope = SearchScope.messages, search_type: SearchType = SearchType.similarity, mmr_lambda: float | None = None, limit: int | None = None) List[MemorySearchResult] [source]#
Search Zep memory for messages matching the query
- Parameters:
query (str)
metadata (Optional[Dict])
search_scope (SearchScope)
search_type (SearchType)
mmr_lambda (Optional[float])
limit (Optional[int])
- Return type:
List[MemorySearchResult]