ChatOCIModelDeployment#
- class langchain_community.chat_models.oci_data_science.ChatOCIModelDeployment[source]#
Bases:
BaseChatModel
,BaseOCIModelDeployment
OCI Data Science Model Deployment chat model integration.
- Setup:
Install
oracle-ads
andlangchain-openai
.pip install -U oracle-ads langchain-openai
Use ads.set_auth() to configure authentication. For example, to use OCI resource_principal for authentication:
import ads ads.set_auth("resource_principal")
For more details on authentication, see: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html
Make sure to have the required policies to access the OCI Data Science Model Deployment endpoint. See: https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm
- Key init args - completion params:
- endpoint: str
The OCI model deployment endpoint.
- temperature: float
Sampling temperature.
- max_tokens: Optional[int]
Max number of tokens to generate.
- Key init args — client params:
- auth: dict
ADS auth dictionary for OCI authentication.
- Instantiate:
from langchain_community.chat_models import ChatOCIModelDeployment chat = ChatOCIModelDeployment( endpoint="https://modeldeployment.<region>.oci.customer-oci.com/<ocid>/predict", model="odsc-llm", streaming=True, max_retries=3, model_kwargs={ "max_token": 512, "temperature": 0.2, # other model parameters ... }, )
- Invocation:
messages = [ ("system", "Translate the user sentence to French."), ("human", "Hello World!"), ] chat.invoke(messages)
AIMessage( content='Bonjour le monde!', response_metadata={ 'token_usage': { 'prompt_tokens': 40, 'total_tokens': 50, 'completion_tokens': 10 }, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop' }, id='run-cbed62da-e1b3-4abd-9df3-ec89d69ca012-0' )
- Streaming:
for chunk in chat.stream(messages): print(chunk)
content='' id='run-02c6-c43f-42de' content='
- ‘ id=’run-02c6-c43f-42de’
content=’B’ id=’run-02c6-c43f-42de’ content=’on’ id=’run-02c6-c43f-42de’ content=’j’ id=’run-02c6-c43f-42de’ content=’our’ id=’run-02c6-c43f-42de’ content=’ le’ id=’run-02c6-c43f-42de’ content=’ monde’ id=’run-02c6-c43f-42de’ content=’!’ id=’run-02c6-c43f-42de’ content=’’ response_metadata={‘finish_reason’: ‘stop’} id=’run-02c6-c43f-42de’
- Async:
await chat.ainvoke(messages) # stream: # async for chunk in (await chat.astream(messages))
AIMessage( content='Bonjour le monde!', response_metadata={'finish_reason': 'stop'}, id='run-8657a105-96b7-4bb6-b98e-b69ca420e5d1-0' )
- Structured output:
from typing import Optional from pydantic import BaseModel, Field class Joke(BaseModel): setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") structured_llm = chat.with_structured_output(Joke, method="json_mode") structured_llm.invoke( "Tell me a joke about cats, " "respond in JSON with `setup` and `punchline` keys" )
Joke( setup='Why did the cat get stuck in the tree?', punchline='Because it was chasing its tail!' )
See
ChatOCIModelDeployment.with_structured_output()
for more.- Customized Usage:
You can inherit from base class and overwrite the _process_response, _process_stream_response, _construct_json_body for customized usage.
class MyChatModel(ChatOCIModelDeployment): def _process_stream_response(self, response_json: dict) -> ChatGenerationChunk: print("My customized streaming result handler.") return GenerationChunk(...) def _process_response(self, response_json:dict) -> ChatResult: print("My customized output handler.") return ChatResult(...) def _construct_json_body(self, messages: list, params: dict) -> dict: print("My customized payload handler.") return { "messages": messages, **params, } chat = MyChatModel( endpoint=f"https://modeldeployment.<region>.oci.customer-oci.com/{ocid}/predict", model="odsc-llm", } chat.invoke("tell me a joke")
- Response metadata
ai_msg = chat.invoke(messages) ai_msg.response_metadata
{ 'token_usage': { 'prompt_tokens': 40, 'total_tokens': 50, 'completion_tokens': 10 }, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop' }
Note
ChatOCIModelDeployment implements the standard
Runnable Interface
. 🏃The
Runnable Interface
has additional methods that are available on runnables, such aswith_types
,with_retry
,assign
,bind
,get_graph
, and more.- param auth: dict [Optional]#
ADS auth dictionary for OCI authentication: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html. This can be generated by calling ads.common.auth.api_keys() or ads.common.auth.resource_principal(). If this is not provided then the ads.common.default_signer() will be used.
- param cache: BaseCache | bool | None = None#
Whether to cache the response.
If true, will use the global cache.
If false, will not use a cache
If None, will use the global cache if it’s set, otherwise no cache.
If instance of BaseCache, will use the provided cache.
Caching is not currently supported for streaming methods of models.
- param callback_manager: BaseCallbackManager | None = None#
Deprecated since version 0.1.7: Use
callbacks()
instead.Callback manager to add to the run trace.
- param callbacks: Callbacks = None#
Callbacks to add to the run trace.
- param custom_get_token_ids: Callable[[str], list[int]] | None = None#
Optional encoder to use for counting tokens.
- param disable_streaming: bool | Literal['tool_calling'] = False#
Whether to disable streaming for this model.
If streaming is bypassed, then
stream()/astream()
will defer toinvoke()/ainvoke()
.If True, will always bypass streaming case.
If “tool_calling”, will bypass streaming case only when the model is called with a
tools
keyword argument.If False (default), will always use streaming case if available.
- param endpoint: str = ''#
The uri of the endpoint from the deployed Model Deployment model.
- param max_retries: int = 3#
Maximum number of retries to make when generating.
- param metadata: dict[str, Any] | None = None#
Metadata to add to the run trace.
- param model: str = 'odsc-llm'#
The name of the model.
- param model_kwargs: Dict[str, Any] [Optional]#
Keyword arguments to pass to the model.
- param rate_limiter: BaseRateLimiter | None = None#
An optional rate limiter to use for limiting the number of requests.
- param stop: List[str] | None = None#
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
- param streaming: bool = False#
Whether to stream the results or not.
- param tags: list[str] | None = None#
Tags to add to the run trace.
- param verbose: bool [Optional]#
Whether to print out response text.
- __call__(messages: list[BaseMessage], stop: list[str] | None = None, callbacks: list[BaseCallbackHandler] | BaseCallbackManager | None = None, **kwargs: Any) BaseMessage #
Deprecated since version langchain-core==0.1.7: Use
invoke()
instead.- Parameters:
messages (list[BaseMessage])
stop (list[str] | None)
callbacks (list[BaseCallbackHandler] | BaseCallbackManager | None)
kwargs (Any)
- Return type:
- async abatch(inputs: list[Input], config: RunnableConfig | list[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) list[Output] #
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.
- Parameters:
inputs (list[Input]) – A list of inputs to the Runnable.
config (RunnableConfig | list[RunnableConfig] | None) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.
return_exceptions (bool) – Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Any | None) – Additional keyword arguments to pass to the Runnable.
- Returns:
A list of outputs from the Runnable.
- Return type:
list[Output]
- async abatch_as_completed(inputs: Sequence[Input], config: RunnableConfig | Sequence[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) AsyncIterator[tuple[int, Output | Exception]] #
Run ainvoke in parallel on a list of inputs, yielding results as they complete.
- Parameters:
inputs (Sequence[Input]) – A list of inputs to the Runnable.
config (RunnableConfig | Sequence[RunnableConfig] | None) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None. Defaults to None.
return_exceptions (bool) – Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Any | None) – Additional keyword arguments to pass to the Runnable.
- Yields:
A tuple of the index of the input and the output from the Runnable.
- Return type:
AsyncIterator[tuple[int, Output | Exception]]
- async acompletion_with_retry(run_manager: AsyncCallbackManagerForLLMRun | None = None, **kwargs: Any) Any #
Use tenacity to retry the async completion call.
- Parameters:
run_manager (AsyncCallbackManagerForLLMRun | None)
kwargs (Any)
- Return type:
Any
- async ainvoke(input: LanguageModelInput, config: RunnableConfig | None = None, *, stop: list[str] | None = None, **kwargs: Any) BaseMessage #
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if the Runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
- Parameters:
input (LanguageModelInput)
config (Optional[RunnableConfig])
stop (Optional[list[str]])
kwargs (Any)
- Return type:
- async astream(input: LanguageModelInput, config: RunnableConfig | None = None, *, stop: list[str] | None = None, **kwargs: Any) AsyncIterator[BaseMessageChunk] #
Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
- Parameters:
input (LanguageModelInput) – The input to the Runnable.
config (Optional[RunnableConfig]) – The config to use for the Runnable. Defaults to None.
kwargs (Any) – Additional keyword arguments to pass to the Runnable.
stop (Optional[list[str]])
- Yields:
The output of the Runnable.
- Return type:
AsyncIterator[BaseMessageChunk]
- async astream_events(input: Any, config: RunnableConfig | None = None, *, version: Literal['v1', 'v2'], include_names: Sequence[str] | None = None, include_types: Sequence[str] | None = None, include_tags: Sequence[str] | None = None, exclude_names: Sequence[str] | None = None, exclude_types: Sequence[str] | None = None, exclude_tags: Sequence[str] | None = None, **kwargs: Any) AsyncIterator[StandardStreamEvent | CustomStreamEvent] #
Generate a stream of events.
Use to create an iterator over StreamEvents that provide real-time information about the progress of the Runnable, including StreamEvents from intermediate results.
A StreamEvent is a dictionary with the following schema:
event
: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
name
: str - The name of the Runnable that generated the event.run_id
: str - randomly generated ID associated with the given execution ofthe Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
parent_ids
: List[str] - The IDs of the parent runnables thatgenerated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
tags
: Optional[List[str]] - The tags of the Runnable that generatedthe event.
metadata
: Optional[Dict[str, Any]] - The metadata of the Runnablethat generated the event.
data
: Dict[str, Any]
Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
event
name
chunk
input
output
on_chat_model_start
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content=”hello”)
on_chat_model_end
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[model name]
{‘input’: ‘hello’}
on_llm_stream
[model name]
‘Hello’
on_llm_end
[model name]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[retriever name]
{“query”: “hello”}
on_retriever_end
[retriever name]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[template_name]
{“question”: “hello”}
on_prompt_end
[template_name]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
Attribute
Type
Description
name
str
A user defined name for the event.
data
Any
The data associated with the event. This can be anything, though we suggest making it JSON serializable.
Here are declarations associated with the standard events shown above:
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- Parameters:
input (Any) – The input to the Runnable.
config (RunnableConfig | None) – The config to use for the Runnable.
version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1. Users should use v2. v1 is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in v2.
include_names (Sequence[str] | None) – Only include events from runnables with matching names.
include_types (Sequence[str] | None) – Only include events from runnables with matching types.
include_tags (Sequence[str] | None) – Only include events from runnables with matching tags.
exclude_names (Sequence[str] | None) – Exclude events from runnables with matching names.
exclude_types (Sequence[str] | None) – Exclude events from runnables with matching types.
exclude_tags (Sequence[str] | None) – Exclude events from runnables with matching tags.
kwargs (Any) – Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.
- Yields:
An async stream of StreamEvents.
- Raises:
NotImplementedError – If the version is not v1 or v2.
- Return type:
AsyncIterator[StandardStreamEvent | CustomStreamEvent]
- batch(inputs: list[Input], config: RunnableConfig | list[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) list[Output] #
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.
- Parameters:
inputs (list[Input])
config (RunnableConfig | list[RunnableConfig] | None)
return_exceptions (bool)
kwargs (Any | None)
- Return type:
list[Output]
- batch_as_completed(inputs: Sequence[Input], config: RunnableConfig | Sequence[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) Iterator[tuple[int, Output | Exception]] #
Run invoke in parallel on a list of inputs, yielding results as they complete.
- Parameters:
inputs (Sequence[Input])
config (RunnableConfig | Sequence[RunnableConfig] | None)
return_exceptions (bool)
kwargs (Any | None)
- Return type:
Iterator[tuple[int, Output | Exception]]
- bind(**kwargs: Any) Runnable[Input, Output] #
Bind arguments to a Runnable, returning a new Runnable.
Useful when a Runnable in a chain requires an argument that is not in the output of the previous Runnable or included in the user input.
- Parameters:
kwargs (Any) – The arguments to bind to the Runnable.
- Returns:
A new Runnable with the arguments bound.
- Return type:
Runnable[Input, Output]
Example:
from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two'
- bind_tools(tools: Sequence[Dict[str, Any] | Type[BaseModel] | Callable | BaseTool], **kwargs: Any) Runnable[PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]], BaseMessage] [source]#
- Parameters:
tools (Sequence[Dict[str, Any] | Type[BaseModel] | Callable | BaseTool])
kwargs (Any)
- Return type:
Runnable[PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]], BaseMessage]
- completion_with_retry(run_manager: CallbackManagerForLLMRun | None = None, **kwargs: Any) Any #
Use tenacity to retry the completion call.
- Parameters:
run_manager (CallbackManagerForLLMRun | None)
kwargs (Any)
- Return type:
Any
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]) RunnableSerializable #
Configure alternatives for Runnables that can be set at runtime.
- Parameters:
which (ConfigurableField) – The ConfigurableField instance that will be used to select the alternative.
default_key (str) – The default key to use if no alternative is selected. Defaults to “default”.
prefix_keys (bool) – Whether to prefix the keys with the ConfigurableField id. Defaults to False.
**kwargs (Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]) – A dictionary of keys to Runnable instances or callables that return Runnable instances.
- Returns:
A new Runnable with the alternatives configured.
- Return type:
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: ConfigurableField | ConfigurableFieldSingleOption | ConfigurableFieldMultiOption) RunnableSerializable #
Configure particular Runnable fields at runtime.
- Parameters:
**kwargs (ConfigurableField | ConfigurableFieldSingleOption | ConfigurableFieldMultiOption) – A dictionary of ConfigurableField instances to configure.
- Returns:
A new Runnable with the fields configured.
- Return type:
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- get_num_tokens(text: str) int #
Get the number of tokens present in the text.
Useful for checking if an input fits in a model’s context window.
- Parameters:
text (str) – The string input to tokenize.
- Returns:
The integer number of tokens in the text.
- Return type:
int
- get_num_tokens_from_messages(messages: list[BaseMessage], tools: Sequence | None = None) int #
Get the number of tokens in the messages.
Useful for checking if an input fits in a model’s context window.
Note: the base implementation of get_num_tokens_from_messages ignores tool schemas.
- Parameters:
messages (list[BaseMessage]) – The message inputs to tokenize.
tools (Sequence | None) – If provided, sequence of dict, BaseModel, function, or BaseTools to be converted to tool schemas.
- Returns:
The sum of the number of tokens across the messages.
- Return type:
int
- get_token_ids(text: str) list[int] #
Return the ordered ids of the tokens in a text.
- Parameters:
text (str) – The string input to tokenize.
- Returns:
- A list of ids corresponding to the tokens in the text, in order they occur
in the text.
- Return type:
list[int]
- invoke(input: LanguageModelInput, config: RunnableConfig | None = None, *, stop: list[str] | None = None, **kwargs: Any) BaseMessage #
Transform a single input into an output. Override to implement.
- Parameters:
input (LanguageModelInput) – The input to the Runnable.
config (Optional[RunnableConfig]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.
stop (Optional[list[str]])
kwargs (Any)
- Returns:
The output of the Runnable.
- Return type:
- stream(input: LanguageModelInput, config: RunnableConfig | None = None, *, stop: list[str] | None = None, **kwargs: Any) Iterator[BaseMessageChunk] #
Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.
- Parameters:
input (LanguageModelInput) – The input to the Runnable.
config (Optional[RunnableConfig]) – The config to use for the Runnable. Defaults to None.
kwargs (Any) – Additional keyword arguments to pass to the Runnable.
stop (Optional[list[str]])
- Yields:
The output of the Runnable.
- Return type:
Iterator[BaseMessageChunk]
- with_alisteners(*, on_start: AsyncListener | None = None, on_end: AsyncListener | None = None, on_error: AsyncListener | None = None) Runnable[Input, Output] #
Bind asynchronous lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Asynchronously called before the Runnable starts running. on_end: Asynchronously called after the Runnable finishes running. on_error: Asynchronously called if the Runnable throws an error.
The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
- Parameters:
on_start (Optional[AsyncListener]) – Asynchronously called before the Runnable starts running. Defaults to None.
on_end (Optional[AsyncListener]) – Asynchronously called after the Runnable finishes running. Defaults to None.
on_error (Optional[AsyncListener]) – Asynchronously called if the Runnable throws an error. Defaults to None.
- Returns:
A new Runnable with the listeners bound.
- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda import time async def test_runnable(time_to_sleep : int): print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}") await asyncio.sleep(time_to_sleep) print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}") async def fn_start(run_obj : Runnable): print(f"on start callback starts at {format_t(time.time())} await asyncio.sleep(3) print(f"on start callback ends at {format_t(time.time())}") async def fn_end(run_obj : Runnable): print(f"on end callback starts at {format_t(time.time())} await asyncio.sleep(2) print(f"on end callback ends at {format_t(time.time())}") runnable = RunnableLambda(test_runnable).with_alisteners( on_start=fn_start, on_end=fn_end ) async def concurrent_runs(): await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3)) asyncio.run(concurrent_runs()) Result: on start callback starts at 2024-05-16T14:20:29.637053+00:00 on start callback starts at 2024-05-16T14:20:29.637150+00:00 on start callback ends at 2024-05-16T14:20:32.638305+00:00 on start callback ends at 2024-05-16T14:20:32.638383+00:00 Runnable[3s]: starts at 2024-05-16T14:20:32.638849+00:00 Runnable[5s]: starts at 2024-05-16T14:20:32.638999+00:00 Runnable[3s]: ends at 2024-05-16T14:20:35.640016+00:00 on end callback starts at 2024-05-16T14:20:35.640534+00:00 Runnable[5s]: ends at 2024-05-16T14:20:37.640169+00:00 on end callback starts at 2024-05-16T14:20:37.640574+00:00 on end callback ends at 2024-05-16T14:20:37.640654+00:00 on end callback ends at 2024-05-16T14:20:39.641751+00:00
- with_config(config: RunnableConfig | None = None, **kwargs: Any) Runnable[Input, Output] #
Bind config to a Runnable, returning a new Runnable.
- Parameters:
config (RunnableConfig | None) – The config to bind to the Runnable.
kwargs (Any) – Additional keyword arguments to pass to the Runnable.
- Returns:
A new Runnable with the config bound.
- Return type:
Runnable[Input, Output]
- with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: tuple[type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) RunnableWithFallbacksT[Input, Output] #
Add fallbacks to a Runnable, returning a new Runnable.
The new Runnable will try the original Runnable, and then each fallback in order, upon failures.
- Parameters:
fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original Runnable fails.
exceptions_to_handle (tuple[type[BaseException], ...]) – A tuple of exception types to handle. Defaults to (Exception,).
exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input. Defaults to None.
- Returns:
A new Runnable that will try the original Runnable, and then each fallback in order, upon failures.
- Return type:
RunnableWithFallbacksT[Input, Output]
Example
from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar
- Parameters:
fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original Runnable fails.
exceptions_to_handle (tuple[type[BaseException], ...]) – A tuple of exception types to handle.
exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.
- Returns:
A new Runnable that will try the original Runnable, and then each fallback in order, upon failures.
- Return type:
RunnableWithFallbacksT[Input, Output]
- with_listeners(*, on_start: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None, on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None, on_error: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None) Runnable[Input, Output] #
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the Runnable starts running, with the Run object. on_end: Called after the Runnable finishes running, with the Run object. on_error: Called if the Runnable throws an error, with the Run object.
The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
- Parameters:
on_start (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – Called before the Runnable starts running. Defaults to None.
on_end (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – Called after the Runnable finishes running. Defaults to None.
on_error (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – Called if the Runnable throws an error. Defaults to None.
- Returns:
A new Runnable with the listeners bound.
- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda from langchain_core.tracers.schemas import Run import time def test_runnable(time_to_sleep : int): time.sleep(time_to_sleep) def fn_start(run_obj: Run): print("start_time:", run_obj.start_time) def fn_end(run_obj: Run): print("end_time:", run_obj.end_time) chain = RunnableLambda(test_runnable).with_listeners( on_start=fn_start, on_end=fn_end ) chain.invoke(2)
- with_retry(*, retry_if_exception_type: tuple[type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) Runnable[Input, Output] #
Create a new Runnable that retries the original Runnable on exceptions.
- Parameters:
retry_if_exception_type (tuple[type[BaseException], ...]) – A tuple of exception types to retry on. Defaults to (Exception,).
wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries. Defaults to True.
stop_after_attempt (int) – The maximum number of attempts to make before giving up. Defaults to 3.
- Returns:
A new Runnable that retries the original Runnable on exceptions.
- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda count = 0 def _lambda(x: int) -> None: global count count = count + 1 if x == 1: raise ValueError("x is 1") else: pass runnable = RunnableLambda(_lambda) try: runnable.with_retry( stop_after_attempt=2, retry_if_exception_type=(ValueError,), ).invoke(1) except ValueError: pass assert (count == 2)
- Parameters:
retry_if_exception_type (tuple[type[BaseException], ...]) – A tuple of exception types to retry on
wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries
stop_after_attempt (int) – The maximum number of attempts to make before giving up
- Returns:
A new Runnable that retries the original Runnable on exceptions.
- Return type:
Runnable[Input, Output]
- with_structured_output(schema: Dict | Type[BaseModel] | None = None, *, method: Literal['json_mode'] = 'json_mode', include_raw: bool = False, **kwargs: Any) Runnable[PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]], Dict | BaseModel] [source]#
Model wrapper that returns outputs formatted to match the given schema.
- Parameters:
schema (Dict | Type[BaseModel] | None) – The output schema as a dict or a Pydantic class. If a Pydantic class then the model output will be an object of that class. If a dict then the model output will be a dict. With a Pydantic class the returned attributes will be validated, whereas with a dict they will not be. If method is “function_calling” and schema is a dict, then the dict must match the OpenAI function-calling spec.
method (Literal['json_mode']) – The method for steering model generation, currently only support for “json_mode”. If “json_mode” then JSON mode will be used. Note that if using “json_mode” then you must include instructions for formatting the output into the desired schema into the model call.
include_raw (bool) – If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True then both the raw model response (a BaseMessage) and the parsed model response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys “raw”, “parsed”, and “parsing_error”.
kwargs (Any)
- Returns:
- If include_raw is True then a dict with keys:
raw: BaseMessage parsed: Optional[_DictOrPydantic] parsing_error: Optional[BaseException]
If include_raw is False then just _DictOrPydantic is returned, where _DictOrPydantic depends on the schema:
- If schema is a Pydantic class then _DictOrPydantic is the Pydantic
class.
If schema is a dict then _DictOrPydantic is a dict.
- Return type:
A Runnable that takes any ChatModel input and returns as output
- with_types(*, input_type: type[Input] | None = None, output_type: type[Output] | None = None) Runnable[Input, Output] #
Bind input and output types to a Runnable, returning a new Runnable.
- Parameters:
input_type (type[Input] | None) – The input type to bind to the Runnable. Defaults to None.
output_type (type[Output] | None) – The output type to bind to the Runnable. Defaults to None.
- Returns:
A new Runnable with the types bound.
- Return type:
Runnable[Input, Output]