EdenAiSpeechToTextTool#
- class langchain_community.tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool[source]#
Bases:
EdenaiToolTool that queries the Eden AI Speech To Text API.
for api reference check edenai documentation: https://app.edenai.run/bricks/speech/asynchronous-speech-to-text.
To use, you should have the environment variable
EDENAI_API_KEYset with your API token. You can find your token here: https://app.edenai.run/admin/account/settingsInitialize the tool.
- Raises:
TypeError β If
args_schemais not a subclass of pydanticBaseModelor dict.
Note
EdenAiSpeechToTextTool implements the standard
Runnable Interface. πThe
Runnable Interfacehas additional methods that are available on runnables, such aswith_config,with_types,with_retry,assign,bind,get_graph, and more.- param args_schema: Type[BaseModel] = <class 'langchain_community.tools.edenai.audio_speech_to_text.SpeechToTextInput'>#
Pydantic model class to validate and parse the toolβs input arguments.
Args schema should be either:
A subclass of pydantic.BaseModel.
A subclass of pydantic.v1.BaseModel if accessing v1 namespace in pydantic 2
a JSON schema dict
- param base_url: str = 'https://api.edenai.run/v2/audio/speech_to_text_async/'#
- param callback_manager: BaseCallbackManager | None = None#
Deprecated since version 0.1.7: Use
callbacks()instead. It will be removed in pydantic==1.0.Callback manager to add to the run trace.
- param callbacks: Callbacks = None#
Callbacks to be called during tool execution.
- param custom_vocabulary: List[str] | None [Required]#
- param description: str = 'A wrapper around edenai Services speech to text Useful for when you have to convert audio to text.Input should be a url to an audio file.'#
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
- param edenai_api_key: SecretStr | None [Optional]#
- param feature: str = 'audio'#
- param handle_tool_error: bool | str | Callable[[ToolException], str] | None = False#
Handle the content of the ToolException thrown.
- param handle_validation_error: bool | str | Callable[[ValidationError | ValidationErrorV1], str] | None = False#
Handle the content of the ValidationError thrown.
- param is_async: bool = True#
- param language: str | None = 'en'#
- param metadata: dict[str, Any] | None = None#
Optional metadata associated with the tool. Defaults to None. This metadata will be associated with each call to this tool, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a tool with its use case.
- param profanity_filter: bool = False#
- param providers: List[str] [Required]#
provider to use for the API call.
- param response_format: Literal['content', 'content_and_artifact'] = 'content'#
The tool response format. Defaults to βcontentβ.
If βcontentβ then the output of the tool is interpreted as the contents of a ToolMessage. If βcontent_and_artifactβ then the output is expected to be a two-tuple corresponding to the (content, artifact) of a ToolMessage.
- param return_direct: bool = False#
Whether to return the toolβs output directly.
Setting this to True means that after the tool is called, the AgentExecutor will stop looping.
- param speakers: int | None [Required]#
- param subfeature: str = 'speech_to_text_async'#
- param tags: list[str] | None = None#
Optional list of tags associated with the tool. Defaults to None. These tags will be associated with each call to this tool, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a tool with its use case.
- param verbose: bool = False#
Whether to log the toolβs progress.
- classmethod check_only_one_provider_selected(
- v: List[str],
This tool has no feature to combine providers results. Therefore we only allow one provider
- Parameters:
v (List[str])
- Return type:
List[str]
- static get_user_agent() str#
- Return type:
str
- __call__(
- tool_input: str,
- callbacks: list[BaseCallbackHandler] | BaseCallbackManager | None = None,
Deprecated since version 0.1.47: Use
invoke()instead. It will not be removed until langchain-core==1.0.Make tool callable (deprecated).
- Parameters:
tool_input (str) β The input to the tool.
callbacks (list[BaseCallbackHandler] | BaseCallbackManager | None) β Callbacks to use during execution.
- Returns:
The toolβs output.
- Return type:
str
- async abatch(
- inputs: list[Input],
- config: RunnableConfig | list[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any | None,
Default implementation runs
ainvokein parallel usingasyncio.gather.The default implementation of
batchworks well for IO bound runnables.Subclasses should override this method if they can batch more efficiently; e.g., if the underlying
Runnableuses an API which supports a batch mode.- Parameters:
inputs (list[Input]) β A list of inputs to the
Runnable.config (RunnableConfig | list[RunnableConfig] | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
**kwargs (Any | None) β Additional keyword arguments to pass to the
Runnable.
- Returns:
A list of outputs from the
Runnable.- Return type:
list[Output]
- async abatch_as_completed(
- inputs: Sequence[Input],
- config: RunnableConfig | Sequence[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any | None,
Run
ainvokein parallel on a list of inputs.Yields results as they complete.
- Parameters:
inputs (Sequence[Input]) β A list of inputs to the
Runnable.config (RunnableConfig | Sequence[RunnableConfig] | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Any | None) β Additional keyword arguments to pass to the
Runnable.
- Yields:
A tuple of the index of the input and the output from the
Runnable.- Return type:
AsyncIterator[tuple[int, Output | Exception]]
- async ainvoke(
- input: str | dict | ToolCall,
- config: RunnableConfig | None = None,
- **kwargs: Any,
Transform a single input into an output.
- Parameters:
input (str | dict | ToolCall) β The input to the
Runnable.config (RunnableConfig | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.kwargs (Any)
- Returns:
The output of the
Runnable.- Return type:
Any
- async arun(
- tool_input: str | dict,
- verbose: bool | None = None,
- start_color: str | None = 'green',
- color: str | None = 'green',
- callbacks: Callbacks = None,
- *,
- tags: list[str] | None = None,
- metadata: dict[str, Any] | None = None,
- run_name: str | None = None,
- run_id: uuid.UUID | None = None,
- config: RunnableConfig | None = None,
- tool_call_id: str | None = None,
- **kwargs: Any,
Run the tool asynchronously.
- Parameters:
tool_input (Union[str, dict]) β The input to the tool.
verbose (Optional[bool]) β Whether to log the toolβs progress. Defaults to None.
start_color (Optional[str]) β The color to use when starting the tool. Defaults to βgreenβ.
color (Optional[str]) β The color to use when ending the tool. Defaults to βgreenβ.
callbacks (Callbacks) β Callbacks to be called during tool execution. Defaults to None.
tags (Optional[list[str]]) β Optional list of tags associated with the tool. Defaults to None.
metadata (Optional[dict[str, Any]]) β Optional metadata associated with the tool. Defaults to None.
run_name (Optional[str]) β The name of the run. Defaults to None.
run_id (Optional[uuid.UUID]) β The id of the run. Defaults to None.
config (Optional[RunnableConfig]) β The configuration for the tool. Defaults to None.
tool_call_id (Optional[str]) β The id of the tool call. Defaults to None.
kwargs (Any) β Keyword arguments to be passed to tool callbacks
- Returns:
The output of the tool.
- Raises:
ToolException β If an error occurs during tool execution.
- Return type:
Any
- async astream(
- input: Input,
- config: RunnableConfig | None = None,
- **kwargs: Any | None,
Default implementation of
astream, which callsainvoke.Subclasses should override this method if they support streaming output.
- Parameters:
input (Input) β The input to the
Runnable.config (RunnableConfig | None) β The config to use for the
Runnable. Defaults to None.kwargs (Any | None) β Additional keyword arguments to pass to the
Runnable.
- Yields:
The output of the
Runnable.- Return type:
AsyncIterator[Output]
- async astream_events(
- input: Any,
- config: RunnableConfig | None = None,
- *,
- version: Literal['v1', 'v2'] = 'v2',
- include_names: Sequence[str] | None = None,
- include_types: Sequence[str] | None = None,
- include_tags: Sequence[str] | None = None,
- exclude_names: Sequence[str] | None = None,
- exclude_types: Sequence[str] | None = None,
- exclude_tags: Sequence[str] | None = None,
- **kwargs: Any,
Generate a stream of events.
Use to create an iterator over
StreamEventsthat provide real-time information about the progress of theRunnable, includingStreamEventsfrom intermediate results.A
StreamEventis a dictionary with the following schema:event: str - Event names are of the format:on_[runnable_type]_(start|stream|end).name: str - The name of theRunnablethat generated the event.run_id: str - randomly generated ID associated with the given execution of theRunnablethat emitted the event. A childRunnablethat gets invoked as part of the execution of a parentRunnableis assigned its own unique ID.parent_ids: list[str] - The IDs of the parent runnables that generated the event. The rootRunnablewill have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.tags: Optional[list[str]] - The tags of theRunnablethat generated the event.metadata: Optional[dict[str, Any]] - The metadata of theRunnablethat generated the event.data: dict[str, Any]
Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
Note
This reference table is for the v2 version of the schema.
event
name
chunk
input
output
on_chat_model_start[model name]
{"messages": [[SystemMessage, HumanMessage]]}on_chat_model_stream[model name]
AIMessageChunk(content="hello")on_chat_model_end[model name]
{"messages": [[SystemMessage, HumanMessage]]}AIMessageChunk(content="hello world")on_llm_start[model name]
{'input': 'hello'}on_llm_stream[model name]
``βHelloβ ``
on_llm_end[model name]
'Hello human!'on_chain_startformat_docs
on_chain_streamformat_docs
'hello world!, goodbye world!'on_chain_endformat_docs
[Document(...)]'hello world!, goodbye world!'on_tool_startsome_tool
{"x": 1, "y": "2"}on_tool_endsome_tool
{"x": 1, "y": "2"}on_retriever_start[retriever name]
{"query": "hello"}on_retriever_end[retriever name]
{"query": "hello"}[Document(...), ..]on_prompt_start[template_name]
{"question": "hello"}on_prompt_end[template_name]
{"question": "hello"}ChatPromptValue(messages: [SystemMessage, ...])In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
Attribute
Type
Description
name
str
A user defined name for the event.
data
Any
The data associated with the event. This can be anything, though we suggest making it JSON serializable.
Here are declarations associated with the standard events shown above:
format_docs:def format_docs(docs: list[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:template = ChatPromptTemplate.from_messages( [ ("system", "You are Cat Agent 007"), ("human", "{question}"), ] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- Parameters:
input (Any) β The input to the
Runnable.config (Optional[RunnableConfig]) β The config to use for the
Runnable.version (Literal['v1', 'v2']) β The version of the schema to use either
'v2'or'v1'. Users should use'v2'.'v1'is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in'v2'.include_names (Optional[Sequence[str]]) β Only include events from
Runnableswith matching names.include_types (Optional[Sequence[str]]) β Only include events from
Runnableswith matching types.include_tags (Optional[Sequence[str]]) β Only include events from
Runnableswith matching tags.exclude_names (Optional[Sequence[str]]) β Exclude events from
Runnableswith matching names.exclude_types (Optional[Sequence[str]]) β Exclude events from
Runnableswith matching types.exclude_tags (Optional[Sequence[str]]) β Exclude events from
Runnableswith matching tags.kwargs (Any) β Additional keyword arguments to pass to the
Runnable. These will be passed toastream_logas this implementation ofastream_eventsis built on top ofastream_log.
- Yields:
An async stream of
StreamEvents.- Raises:
NotImplementedError β If the version is not
'v1'or'v2'.- Return type:
AsyncIterator[StreamEvent]
- batch(
- inputs: list[Input],
- config: RunnableConfig | list[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any | None,
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying
Runnableuses an API which supports a batch mode.- Parameters:
inputs (list[Input]) β A list of inputs to the
Runnable.config (RunnableConfig | list[RunnableConfig] | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
**kwargs (Any | None) β Additional keyword arguments to pass to the
Runnable.
- Returns:
A list of outputs from the
Runnable.- Return type:
list[Output]
- batch_as_completed(
- inputs: Sequence[Input],
- config: RunnableConfig | Sequence[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any | None,
Run
invokein parallel on a list of inputs.Yields results as they complete.
- Parameters:
inputs (Sequence[Input]) β A list of inputs to the
Runnable.config (RunnableConfig | Sequence[RunnableConfig] | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
**kwargs (Any | None) β Additional keyword arguments to pass to the
Runnable.
- Yields:
Tuples of the index of the input and the output from the
Runnable.- Return type:
Iterator[tuple[int, Output | Exception]]
- bind(
- **kwargs: Any,
Bind arguments to a
Runnable, returning a newRunnable.Useful when a
Runnablein a chain requires an argument that is not in the output of the previousRunnableor included in the user input.- Parameters:
kwargs (Any) β The arguments to bind to the
Runnable.- Returns:
A new
Runnablewith the arguments bound.- Return type:
Runnable[Input, Output]
Example:
from langchain_ollama import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model="llama2") # Without bind. chain = llm | StrOutputParser() chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = llm.bind(stop=["three"]) | StrOutputParser() chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two'
- configurable_alternatives(
- which: ConfigurableField,
- *,
- default_key: str = 'default',
- prefix_keys: bool = False,
- **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
Configure alternatives for
Runnablesthat can be set at runtime.- Parameters:
which (ConfigurableField) β The
ConfigurableFieldinstance that will be used to select the alternative.default_key (str) β The default key to use if no alternative is selected. Defaults to
'default'.prefix_keys (bool) β Whether to prefix the keys with the
ConfigurableFieldid. Defaults to False.**kwargs (Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]) β A dictionary of keys to
Runnableinstances or callables that returnRunnableinstances.
- Returns:
A new
Runnablewith the alternatives configured.- Return type:
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-7-sonnet-20250219" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI(), ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config(configurable={"llm": "openai"}) .invoke("which organization created you?") .content )
- configurable_fields( ) RunnableSerializable#
Configure particular
Runnablefields at runtime.- Parameters:
**kwargs (ConfigurableField | ConfigurableFieldSingleOption | ConfigurableFieldMultiOption) β A dictionary of
ConfigurableFieldinstances to configure.- Raises:
ValueError β If a configuration key is not found in the
Runnable.- Returns:
A new
Runnablewith the fields configured.- Return type:
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print( "max_tokens_200: ", model.with_config(configurable={"output_token_number": 200}) .invoke("tell me something about chess") .content, )
- invoke(
- input: str | dict | ToolCall,
- config: RunnableConfig | None = None,
- **kwargs: Any,
Transform a single input into an output.
- Parameters:
input (str | dict | ToolCall) β The input to the
Runnable.config (RunnableConfig | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.kwargs (Any)
- Returns:
The output of the
Runnable.- Return type:
Any
- run(
- tool_input: str | dict[str, Any],
- verbose: bool | None = None,
- start_color: str | None = 'green',
- color: str | None = 'green',
- callbacks: Callbacks = None,
- *,
- tags: list[str] | None = None,
- metadata: dict[str, Any] | None = None,
- run_name: str | None = None,
- run_id: uuid.UUID | None = None,
- config: RunnableConfig | None = None,
- tool_call_id: str | None = None,
- **kwargs: Any,
Run the tool.
- Parameters:
tool_input (Union[str, dict[str, Any]]) β The input to the tool.
verbose (Optional[bool]) β Whether to log the toolβs progress. Defaults to None.
start_color (Optional[str]) β The color to use when starting the tool. Defaults to βgreenβ.
color (Optional[str]) β The color to use when ending the tool. Defaults to βgreenβ.
callbacks (Callbacks) β Callbacks to be called during tool execution. Defaults to None.
tags (Optional[list[str]]) β Optional list of tags associated with the tool. Defaults to None.
metadata (Optional[dict[str, Any]]) β Optional metadata associated with the tool. Defaults to None.
run_name (Optional[str]) β The name of the run. Defaults to None.
run_id (Optional[uuid.UUID]) β The id of the run. Defaults to None.
config (Optional[RunnableConfig]) β The configuration for the tool. Defaults to None.
tool_call_id (Optional[str]) β The id of the tool call. Defaults to None.
kwargs (Any) β Keyword arguments to be passed to tool callbacks (event handler)
- Returns:
The output of the tool.
- Raises:
ToolException β If an error occurs during tool execution.
- Return type:
Any
- stream(
- input: Input,
- config: RunnableConfig | None = None,
- **kwargs: Any | None,
Default implementation of
stream, which callsinvoke.Subclasses should override this method if they support streaming output.
- Parameters:
input (Input) β The input to the
Runnable.config (RunnableConfig | None) β The config to use for the
Runnable. Defaults to None.kwargs (Any | None) β Additional keyword arguments to pass to the
Runnable.
- Yields:
The output of the
Runnable.- Return type:
Iterator[Output]
- with_alisteners(
- *,
- on_start: AsyncListener | None = None,
- on_end: AsyncListener | None = None,
- on_error: AsyncListener | None = None,
Bind async lifecycle listeners to a
Runnable.Returns a new
Runnable.The Run object contains information about the run, including its
id,type,input,output,error,start_time,end_time, and any tags or metadata added to the run.- Parameters:
on_start (Optional[AsyncListener]) β Called asynchronously before the
Runnablestarts running, with theRunobject. Defaults to None.on_end (Optional[AsyncListener]) β Called asynchronously after the
Runnablefinishes running, with theRunobject. Defaults to None.on_error (Optional[AsyncListener]) β Called asynchronously if the
Runnablethrows an error, with theRunobject. Defaults to None.
- Returns:
A new
Runnablewith the listeners bound.- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda, Runnable from datetime import datetime, timezone import time import asyncio def format_t(timestamp: float) -> str: return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat() async def test_runnable(time_to_sleep : int): print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}") await asyncio.sleep(time_to_sleep) print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}") async def fn_start(run_obj : Runnable): print(f"on start callback starts at {format_t(time.time())}") await asyncio.sleep(3) print(f"on start callback ends at {format_t(time.time())}") async def fn_end(run_obj : Runnable): print(f"on end callback starts at {format_t(time.time())}") await asyncio.sleep(2) print(f"on end callback ends at {format_t(time.time())}") runnable = RunnableLambda(test_runnable).with_alisteners( on_start=fn_start, on_end=fn_end ) async def concurrent_runs(): await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3)) asyncio.run(concurrent_runs()) Result: on start callback starts at 2025-03-01T07:05:22.875378+00:00 on start callback starts at 2025-03-01T07:05:22.875495+00:00 on start callback ends at 2025-03-01T07:05:25.878862+00:00 on start callback ends at 2025-03-01T07:05:25.878947+00:00 Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00 Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00 Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00 on end callback starts at 2025-03-01T07:05:27.882360+00:00 Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00 on end callback starts at 2025-03-01T07:05:28.882428+00:00 on end callback ends at 2025-03-01T07:05:29.883893+00:00 on end callback ends at 2025-03-01T07:05:30.884831+00:00
- with_config(
- config: RunnableConfig | None = None,
- **kwargs: Any,
Bind config to a
Runnable, returning a newRunnable.- Parameters:
config (RunnableConfig | None) β The config to bind to the
Runnable.kwargs (Any) β Additional keyword arguments to pass to the
Runnable.
- Returns:
A new
Runnablewith the config bound.- Return type:
Runnable[Input, Output]
- with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: tuple[type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) RunnableWithFallbacksT[Input, Output]#
Add fallbacks to a
Runnable, returning a newRunnable.The new
Runnablewill try the originalRunnable, and then each fallback in order, upon failures.- Parameters:
fallbacks (Sequence[Runnable[Input, Output]]) β A sequence of runnables to try if the original
Runnablefails.exceptions_to_handle (tuple[type[BaseException], ...]) β A tuple of exception types to handle. Defaults to
(Exception,).exception_key (Optional[str]) β If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base
Runnableand its fallbacks must accept a dictionary as input. Defaults to None.
- Returns:
A new
Runnablethat will try the originalRunnable, and then each fallback in order, upon failures.- Return type:
RunnableWithFallbacksT[Input, Output]
Example
from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print("".join(runnable.stream({}))) # foo bar
- Parameters:
fallbacks (Sequence[Runnable[Input, Output]]) β A sequence of runnables to try if the original
Runnablefails.exceptions_to_handle (tuple[type[BaseException], ...]) β A tuple of exception types to handle.
exception_key (Optional[str]) β If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base
Runnableand its fallbacks must accept a dictionary as input.
- Returns:
A new
Runnablethat will try the originalRunnable, and then each fallback in order, upon failures.- Return type:
RunnableWithFallbacksT[Input, Output]
- with_listeners(
- *,
- on_start: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
- on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
- on_error: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
Bind lifecycle listeners to a
Runnable, returning a newRunnable.The Run object contains information about the run, including its
id,type,input,output,error,start_time,end_time, and any tags or metadata added to the run.- Parameters:
on_start (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) β Called before the
Runnablestarts running, with theRunobject. Defaults to None.on_end (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) β Called after the
Runnablefinishes running, with theRunobject. Defaults to None.on_error (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) β Called if the
Runnablethrows an error, with theRunobject. Defaults to None.
- Returns:
A new
Runnablewith the listeners bound.- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda from langchain_core.tracers.schemas import Run import time def test_runnable(time_to_sleep: int): time.sleep(time_to_sleep) def fn_start(run_obj: Run): print("start_time:", run_obj.start_time) def fn_end(run_obj: Run): print("end_time:", run_obj.end_time) chain = RunnableLambda(test_runnable).with_listeners( on_start=fn_start, on_end=fn_end ) chain.invoke(2)
- with_retry(*, retry_if_exception_type: tuple[type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, exponential_jitter_params: Optional[ExponentialJitterParams] = None, stop_after_attempt: int = 3) Runnable[Input, Output]#
Create a new Runnable that retries the original Runnable on exceptions.
- Parameters:
retry_if_exception_type (tuple[type[BaseException], ...]) β A tuple of exception types to retry on. Defaults to (Exception,).
wait_exponential_jitter (bool) β Whether to add jitter to the wait time between retries. Defaults to True.
stop_after_attempt (int) β The maximum number of attempts to make before giving up. Defaults to 3.
exponential_jitter_params (Optional[ExponentialJitterParams]) β Parameters for
tenacity.wait_exponential_jitter. Namely:initial,max,exp_base, andjitter(all float values).
- Returns:
A new Runnable that retries the original Runnable on exceptions.
- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda count = 0 def _lambda(x: int) -> None: global count count = count + 1 if x == 1: raise ValueError("x is 1") else: pass runnable = RunnableLambda(_lambda) try: runnable.with_retry( stop_after_attempt=2, retry_if_exception_type=(ValueError,), ).invoke(1) except ValueError: pass assert count == 2
- with_types(
- *,
- input_type: type[Input] | None = None,
- output_type: type[Output] | None = None,
Bind input and output types to a
Runnable, returning a newRunnable.- Parameters:
input_type (type[Input] | None) β The input type to bind to the
Runnable. Defaults to None.output_type (type[Output] | None) β The output type to bind to the
Runnable. Defaults to None.
- Returns:
A new Runnable with the types bound.
- Return type:
Runnable[Input, Output]
- property args: dict#
Get the toolβs input arguments schema.
- Returns:
Dictionary containing the toolβs argument properties.
- property is_single_input: bool#
Check if the tool accepts only a single input argument.
- Returns:
True if the tool has only one input argument, False otherwise.
- property tool_call_schema: type[BaseModel] | dict[str, Any]#
Get the schema for tool calls, excluding injected arguments.
- Returns:
The schema that should be used for tool calls from language models.
Examples using EdenAiSpeechToTextTool