Skip to main content
Ctrl+K
🦜🔗 LangChain  documentation - Home 🦜🔗 LangChain  documentation - Home
  • Reference
Ctrl+K
Docs
  • GitHub
  • X / Twitter
Ctrl+K
  • Reference
Docs
  • GitHub
  • X / Twitter

Section Navigation

Base packages

  • Core
    • agents
    • beta
    • caches
    • callbacks
    • chat_history
    • chat_loaders
    • chat_sessions
    • document_loaders
    • documents
    • embeddings
    • example_selectors
    • exceptions
    • globals
    • indexing
    • language_models
    • load
    • messages
    • output_parsers
    • outputs
    • prompt_values
    • prompts
    • rate_limiters
    • retrievers
    • runnables
    • stores
    • structured_query
    • sys_info
    • tools
    • tracers
    • utils
    • vectorstores
      • VectorStore
      • VectorStoreRetriever
      • InMemoryVectorStore
      • maximal_marginal_relevance
  • Langchain
  • Text Splitters
  • Community
  • Experimental

Integrations

  • AI21
  • Anthropic
  • AstraDB
  • AWS
  • Azure Ai
  • Azure Dynamic Sessions
  • Cerebras
  • Chroma
  • Cohere
  • Deepseek
  • Elasticsearch
  • Exa
  • Fireworks
  • Google Community
  • Google GenAI
  • Google VertexAI
  • Groq
  • Huggingface
  • IBM
  • Milvus
  • MistralAI
  • MongoDB
  • Neo4J
  • Nomic
  • Nvidia Ai Endpoints
  • Ollama
  • OpenAI
  • Perplexity
  • Pinecone
  • Postgres
  • Prompty
  • Qdrant
  • Redis
  • Sema4
  • Snowflake
  • Sqlserver
  • Standard Tests
  • Tavily
  • Together
  • Unstructured
  • Upstage
  • Weaviate
  • XAI
  • LangChain Python API Reference
  • langchain-core: 0.3.60
  • vectorstores

vectorstores#

Vector stores.

Classes

vectorstores.base.VectorStore()

Interface for vector store.

vectorstores.base.VectorStoreRetriever

Base Retriever class for VectorStore.

vectorstores.in_memory.InMemoryVectorStore(...)

In-memory vector store implementation.

Functions

vectorstores.utils.maximal_marginal_relevance(...)

Calculate maximal marginal relevance.

© Copyright 2025, LangChain Inc.