Skip to main content

Pydantic parser

This output parser allows users to specify an arbitrary Pydantic Model and query LLMs for outputs that conform to that schema.

Keep in mind that large language models are leaky abstractions! Youโ€™ll have to use an LLM with sufficient capacity to generate well-formed JSON. In the OpenAI family, DaVinci can do reliably but Curieโ€™s ability already drops off dramatically.

Use Pydantic to declare your data model. Pydanticโ€™s BaseModel is like a Python dataclass, but with actual type checking + coercion.

from typing import List

from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field, validator
from langchain_openai import ChatOpenAI
model = ChatOpenAI(temperature=0)
# Define your desired data structure.
class Joke(BaseModel):
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")

# You can add custom validation logic easily with Pydantic.
@validator("setup")
def question_ends_with_question_mark(cls, field):
if field[-1] != "?":
raise ValueError("Badly formed question!")
return field


# And a query intented to prompt a language model to populate the data structure.
joke_query = "Tell me a joke."

# Set up a parser + inject instructions into the prompt template.
parser = PydanticOutputParser(pydantic_object=Joke)

prompt = PromptTemplate(
template="Answer the user query.\n{format_instructions}\n{query}\n",
input_variables=["query"],
partial_variables={"format_instructions": parser.get_format_instructions()},
)

chain = prompt | model | parser

chain.invoke({"query": joke_query})
Joke(setup="Why don't scientists trust atoms?", punchline='Because they make up everything!')
# Here's another example, but with a compound typed field.
class Actor(BaseModel):
name: str = Field(description="name of an actor")
film_names: List[str] = Field(description="list of names of films they starred in")


actor_query = "Generate the filmography for a random actor."

parser = PydanticOutputParser(pydantic_object=Actor)

prompt = PromptTemplate(
template="Answer the user query.\n{format_instructions}\n{query}\n",
input_variables=["query"],
partial_variables={"format_instructions": parser.get_format_instructions()},
)

chain = prompt | model | parser

chain.invoke({"query": actor_query})
Actor(name='Tom Hanks', film_names=['Forrest Gump', 'Cast Away', 'Saving Private Ryan', 'Toy Story', 'The Green Mile'])

Find out api documentation for PydanticOutputParser.


Help us out by providing feedback on this documentation page: