EdenAiEmbeddings#
- class langchain_community.embeddings.edenai.EdenAiEmbeddings[source]#
Bases:
BaseModel
,Embeddings
EdenAI embedding. environment variable
EDENAI_API_KEY
set with your API key, or pass it as a named parameter.Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param edenai_api_key: SecretStr | None = None#
EdenAI API Token
- Constraints:
type = string
writeOnly = True
format = password
- param model: str | None = None#
model name for above provider (eg: ‘gpt-3.5-turbo-instruct’ for openai) available models are shown on https://docs.edenai.co/ under ‘available providers’
- param provider: str = 'openai'#
embedding provider to use (eg: openai,google etc.)
- async aembed_documents(texts: List[str]) List[List[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (List[str]) – List of text to embed.
- Returns:
List of embeddings.
- Return type:
List[List[float]]
- async aembed_query(text: str) List[float] #
Asynchronous Embed query text.
- Parameters:
text (str) – Text to embed.
- Returns:
Embedding.
- Return type:
List[float]
- embed_documents(texts: List[str]) List[List[float]] [source]#
Embed a list of documents using EdenAI.
- Parameters:
texts (List[str]) – The list of texts to embed.
- Returns:
List of embeddings, one for each text.
- Return type:
List[List[float]]
Examples using EdenAiEmbeddings