SambaStudioEmbeddings#
- class langchain_community.embeddings.sambanova.SambaStudioEmbeddings[source]#
Bases:
BaseModel
,Embeddings
SambaNova embedding models.
To use, you should have the environment variables
SAMBASTUDIO_EMBEDDINGS_BASE_URL
,SAMBASTUDIO_EMBEDDINGS_BASE_URI
SAMBASTUDIO_EMBEDDINGS_PROJECT_ID
,SAMBASTUDIO_EMBEDDINGS_ENDPOINT_ID
,SAMBASTUDIO_EMBEDDINGS_API_KEY
set with your personal sambastudio variable or pass it as a named parameter to the constructor.Example
from langchain_community.embeddings import SambaStudioEmbeddings embeddings = SambaStudioEmbeddings(sambastudio_embeddings_base_url=base_url, sambastudio_embeddings_base_uri=base_uri, sambastudio_embeddings_project_id=project_id, sambastudio_embeddings_endpoint_id=endpoint_id, sambastudio_embeddings_api_key=api_key, batch_size=32) (or) embeddings = SambaStudioEmbeddings(batch_size=32) (or) # CoE example embeddings = SambaStudioEmbeddings( batch_size=1, model_kwargs={ 'select_expert':'e5-mistral-7b-instruct' } )
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param batch_size: int = 32#
Batch size for the embedding models
- param model_kwargs: dict = {}#
Key word arguments to pass to the model.
- param sambastudio_embeddings_api_key: str = ''#
sambastudio api key
- param sambastudio_embeddings_base_uri: str = ''#
endpoint base uri
- param sambastudio_embeddings_base_url: str = ''#
Base url to use
- param sambastudio_embeddings_endpoint_id: str = ''#
endpoint id on sambastudio for model
- param sambastudio_embeddings_project_id: str = ''#
Project id on sambastudio for model
- async aembed_documents(texts: List[str]) List[List[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (List[str]) – List of text to embed.
- Returns:
List of embeddings.
- Return type:
List[List[float]]
- async aembed_query(text: str) List[float] #
Asynchronous Embed query text.
- Parameters:
text (str) – Text to embed.
- Returns:
Embedding.
- Return type:
List[float]
- embed_documents(texts: List[str], batch_size: int | None = None) List[List[float]] [source]#
Returns a list of embeddings for the given sentences. :param texts: List of texts to encode :type texts: List[str] :param batch_size: Batch size for the encoding :type batch_size: int
- Returns:
List of embeddings for the given sentences
- Return type:
List[np.ndarray] or List[tensor]
- Parameters:
texts (List[str]) –
batch_size (int | None) –
Examples using SambaStudioEmbeddings