ConversationStringBufferMemory#
- class langchain.memory.buffer.ConversationStringBufferMemory[source]#
Bases:
BaseMemory
Deprecated since version 0.3.1: Please see the migration guide at: https://python.langchain.com/docs/versions/migrating_memory/ It will be removed in None==1.0.0.
A basic memory implementation that simply stores the conversation history.
This stores the entire conversation history in memory without any additional processing.
Equivalent to ConversationBufferMemory but tailored more specifically for string-based conversations rather than chat models.
Note that additional processing may be required in some situations when the conversation history is too large to fit in the context window of the model.
- param ai_prefix: str = 'AI'#
Prefix to use for AI generated responses.
- param buffer: str = ''#
- param human_prefix: str = 'Human'#
- param input_key: str | None = None#
- param output_key: str | None = None#
- async aload_memory_variables(inputs: Dict[str, Any]) Dict[str, str] [source]#
Return history buffer.
- Parameters:
inputs (Dict[str, Any])
- Return type:
Dict[str, str]
- async asave_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None [source]#
Save context from this conversation to buffer.
- Parameters:
inputs (Dict[str, Any])
outputs (Dict[str, str])
- Return type:
None
- load_memory_variables(inputs: Dict[str, Any]) Dict[str, str] [source]#
Return history buffer.
- Parameters:
inputs (Dict[str, Any])
- Return type:
Dict[str, str]
- save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None [source]#
Save context from this conversation to buffer.
- Parameters:
inputs (Dict[str, Any])
outputs (Dict[str, str])
- Return type:
None
- classmethod validate_chains(values: Dict) Dict [source]#
Validate that return messages is not True.
- Parameters:
values (Dict)
- Return type:
Dict
- property memory_variables: List[str]#
Will always return list of memory variables. :meta private: