ConversationSummaryBufferMemory#
- class langchain.memory.summary_buffer.ConversationSummaryBufferMemory[source]#
Bases:
BaseChatMemory
,SummarizerMixin
Deprecated since version 0.3.1: Please see the migration guide at: https://python.langchain.com/docs/versions/migrating_memory/ It will be removed in None==1.0.0.
Buffer with summarizer for storing conversation memory.
Provides a running summary of the conversation together with the most recent messages in the conversation under the constraint that the total number of tokens in the conversation does not exceed a certain limit.
- param ai_prefix: str = 'AI'#
- param chat_memory: BaseChatMessageHistory [Optional]#
- param human_prefix: str = 'Human'#
- param input_key: str | None = None#
- param llm: BaseLanguageModel [Required]#
- param max_token_limit: int = 2000#
- param memory_key: str = 'history'#
- param moving_summary_buffer: str = ''#
- param output_key: str | None = None#
- param prompt: BasePromptTemplate = PromptTemplate(input_variables=['new_lines', 'summary'], input_types={}, partial_variables={}, template='Progressively summarize the lines of conversation provided, adding onto the previous summary returning a new summary.\n\nEXAMPLE\nCurrent summary:\nThe human asks what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is a force for good.\n\nNew lines of conversation:\nHuman: Why do you think artificial intelligence is a force for good?\nAI: Because artificial intelligence will help humans reach their full potential.\n\nNew summary:\nThe human asks what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is a force for good because it will help humans reach their full potential.\nEND OF EXAMPLE\n\nCurrent summary:\n{summary}\n\nNew lines of conversation:\n{new_lines}\n\nNew summary:')#
- param return_messages: bool = False#
- param summary_message_cls: Type[BaseMessage] = <class 'langchain_core.messages.system.SystemMessage'>#
- async abuffer() str | List[BaseMessage] [source]#
Async memory buffer.
- Return type:
str | List[BaseMessage]
- async aload_memory_variables(inputs: Dict[str, Any]) Dict[str, Any] [source]#
Asynchronously return key-value pairs given the text input to the chain.
- Parameters:
inputs (Dict[str, Any])
- Return type:
Dict[str, Any]
- async apredict_new_summary(messages: List[BaseMessage], existing_summary: str) str #
- Parameters:
messages (List[BaseMessage])
existing_summary (str)
- Return type:
str
- async aprune() None [source]#
Asynchronously prune buffer if it exceeds max token limit
- Return type:
None
- async asave_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None [source]#
Asynchronously save context from this conversation to buffer.
- Parameters:
inputs (Dict[str, Any])
outputs (Dict[str, str])
- Return type:
None
- load_memory_variables(inputs: Dict[str, Any]) Dict[str, Any] [source]#
Return history buffer.
- Parameters:
inputs (Dict[str, Any])
- Return type:
Dict[str, Any]
- predict_new_summary(messages: List[BaseMessage], existing_summary: str) str #
- Parameters:
messages (List[BaseMessage])
existing_summary (str)
- Return type:
str
- save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None [source]#
Save context from this conversation to buffer.
- Parameters:
inputs (Dict[str, Any])
outputs (Dict[str, str])
- Return type:
None
- classmethod validate_prompt_input_variables(values: Dict) Dict [source]#
Validate that prompt input variables are consistent.
- Parameters:
values (Dict)
- Return type:
Dict
- property buffer: str | List[BaseMessage]#
String buffer of memory.