VectorStoreRetrieverMemory#
- class langchain.memory.vectorstore.VectorStoreRetrieverMemory[source]#
Bases:
BaseMemory
Deprecated since version 0.3.1: Please see the migration guide at: https://python.langchain.com/docs/versions/migrating_memory/ It will be removed in None==1.0.0.
Store the conversation history in a vector store and retrieves the relevant parts of past conversation based on the input.
- param exclude_input_keys: Sequence[str] [Optional]#
Input keys to exclude in addition to memory key when constructing the document
- param input_key: str | None = None#
Key name to index the inputs to load_memory_variables.
- param memory_key: str = 'history'#
Key name to locate the memories in the result of load_memory_variables.
- param retriever: VectorStoreRetriever [Required]#
VectorStoreRetriever object to connect to.
- param return_docs: bool = False#
Whether or not to return the result of querying the database directly.
- async aload_memory_variables(inputs: Dict[str, Any]) Dict[str, List[Document] | str] [source]#
Return history buffer.
- Parameters:
inputs (Dict[str, Any])
- Return type:
Dict[str, List[Document] | str]
- async asave_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None [source]#
Save context from this conversation to buffer.
- Parameters:
inputs (Dict[str, Any])
outputs (Dict[str, str])
- Return type:
None
- load_memory_variables(inputs: Dict[str, Any]) Dict[str, List[Document] | str] [source]#
Return history buffer.
- Parameters:
inputs (Dict[str, Any])
- Return type:
Dict[str, List[Document] | str]
- save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None [source]#
Save context from this conversation to buffer.
- Parameters:
inputs (Dict[str, Any])
outputs (Dict[str, str])
- Return type:
None
- property memory_variables: List[str]#
The list of keys emitted from the load_memory_variables method.