Skip to main content
Open In ColabOpen on GitHub

HugeGraph

HugeGraph is a convenient, efficient, and adaptable graph database compatible with the Apache TinkerPop3 framework and the Gremlin query language.

Gremlin is a graph traversal language and virtual machine developed by Apache TinkerPop of the Apache Software Foundation.

This notebook shows how to use LLMs to provide a natural language interface to HugeGraph database.

Setting upโ€‹

You will need to have a running HugeGraph instance. You can run a local docker container by running the executing the following script:

docker run \
--name=graph \
-itd \
-p 8080:8080 \
hugegraph/hugegraph

If we want to connect HugeGraph in the application, we need to install python sdk:

pip3 install hugegraph-python

If you are using the docker container, you need to wait a couple of second for the database to start, and then we need create schema and write graph data for the database.

from hugegraph.connection import PyHugeGraph

client = PyHugeGraph("localhost", "8080", user="admin", pwd="admin", graph="hugegraph")

First, we create the schema for a simple movie database:

"""schema"""
schema = client.schema()
schema.propertyKey("name").asText().ifNotExist().create()
schema.propertyKey("birthDate").asText().ifNotExist().create()
schema.vertexLabel("Person").properties(
"name", "birthDate"
).usePrimaryKeyId().primaryKeys("name").ifNotExist().create()
schema.vertexLabel("Movie").properties("name").usePrimaryKeyId().primaryKeys(
"name"
).ifNotExist().create()
schema.edgeLabel("ActedIn").sourceLabel("Person").targetLabel(
"Movie"
).ifNotExist().create()
'create EdgeLabel success, Detail: "b\'{"id":1,"name":"ActedIn","source_label":"Person","target_label":"Movie","frequency":"SINGLE","sort_keys":[],"nullable_keys":[],"index_labels":[],"properties":[],"status":"CREATED","ttl":0,"enable_label_index":true,"user_data":{"~create_time":"2023-07-04 10:48:47.908"}}\'"'

Then we can insert some data.

"""graph"""
g = client.graph()
g.addVertex("Person", {"name": "Al Pacino", "birthDate": "1940-04-25"})
g.addVertex("Person", {"name": "Robert De Niro", "birthDate": "1943-08-17"})
g.addVertex("Movie", {"name": "The Godfather"})
g.addVertex("Movie", {"name": "The Godfather Part II"})
g.addVertex("Movie", {"name": "The Godfather Coda The Death of Michael Corleone"})

g.addEdge("ActedIn", "1:Al Pacino", "2:The Godfather", {})
g.addEdge("ActedIn", "1:Al Pacino", "2:The Godfather Part II", {})
g.addEdge(
"ActedIn", "1:Al Pacino", "2:The Godfather Coda The Death of Michael Corleone", {}
)
g.addEdge("ActedIn", "1:Robert De Niro", "2:The Godfather Part II", {})
1:Robert De Niro--ActedIn-->2:The Godfather Part II

Creating HugeGraphQAChainโ€‹

We can now create the HugeGraph and HugeGraphQAChain. To create the HugeGraph we simply need to pass the database object to the HugeGraph constructor.

from langchain.chains import HugeGraphQAChain
from langchain_community.graphs import HugeGraph
from langchain_openai import ChatOpenAI
graph = HugeGraph(
username="admin",
password="admin",
address="localhost",
port=8080,
graph="hugegraph",
)

Refresh graph schema informationโ€‹

If the schema of database changes, you can refresh the schema information needed to generate Gremlin statements.

# graph.refresh_schema()
print(graph.get_schema)
Node properties: [name: Person, primary_keys: ['name'], properties: ['name', 'birthDate'], name: Movie, primary_keys: ['name'], properties: ['name']]
Edge properties: [name: ActedIn, properties: []]
Relationships: ['Person--ActedIn-->Movie']

Querying the graphโ€‹

We can now use the graph Gremlin QA chain to ask question of the graph

chain = HugeGraphQAChain.from_llm(ChatOpenAI(temperature=0), graph=graph, verbose=True)
chain.run("Who played in The Godfather?")


> Entering new chain...
Generated gremlin:
g.V().has('Movie', 'name', 'The Godfather').in('ActedIn').valueMap(true)
Full Context:
[{'id': '1:Al Pacino', 'label': 'Person', 'name': ['Al Pacino'], 'birthDate': ['1940-04-25']}]

> Finished chain.
'Al Pacino played in The Godfather.'

Was this page helpful?