Nebius
All functionality related to Nebius AI Studio
Nebius AI Studio provides API access to a wide range of state-of-the-art large language models and embedding models for various use cases.
Installation and Setup
The Nebius integration can be installed via pip:
pip install langchain-nebius
To use Nebius AI Studio, you'll need an API key which you can obtain from Nebius AI Studio. The API key can be passed as an initialization parameter api_key
or set as the environment variable NEBIUS_API_KEY
.
import os
os.environ["NEBIUS_API_KEY"] = "YOUR-NEBIUS-API-KEY"
Available Models
The full list of supported models can be found in the Nebius AI Studio Documentation.
Chat models
ChatNebius
The ChatNebius
class allows you to interact with Nebius AI Studio's chat models.
See a usage example.
from langchain_nebius import ChatNebius
# Initialize the chat model
chat = ChatNebius(
model="Qwen/Qwen3-30B-A3B-fast", # Choose from available models
temperature=0.6,
top_p=0.95
)
Embedding models
NebiusEmbeddings
The NebiusEmbeddings
class allows you to generate vector embeddings using Nebius AI Studio's embedding models.
See a usage example.
from langchain_nebius import NebiusEmbeddings
# Initialize embeddings
embeddings = NebiusEmbeddings(
model="BAAI/bge-en-icl" # Default embedding model
)
Retrievers
NebiusRetriever
The NebiusRetriever
enables efficient similarity search using embeddings from Nebius AI Studio. It leverages high-quality embedding models to enable semantic search over documents.
See a usage example.
from langchain_core.documents import Document
from langchain_nebius import NebiusEmbeddings, NebiusRetriever
# Create sample documents
docs = [
Document(page_content="Paris is the capital of France"),
Document(page_content="Berlin is the capital of Germany"),
]
# Initialize embeddings
embeddings = NebiusEmbeddings()
# Create retriever
retriever = NebiusRetriever(
embeddings=embeddings,
docs=docs,
k=2 # Number of documents to return
)
Tools
NebiusRetrievalTool
The NebiusRetrievalTool
allows you to create a tool for agents based on the NebiusRetriever.
from langchain_nebius import NebiusEmbeddings, NebiusRetriever, NebiusRetrievalTool
from langchain_core.documents import Document
# Create sample documents
docs = [
Document(page_content="Paris is the capital of France and has the Eiffel Tower"),
Document(page_content="Berlin is the capital of Germany and has the Brandenburg Gate"),
]
# Create embeddings and retriever
embeddings = NebiusEmbeddings()
retriever = NebiusRetriever(embeddings=embeddings, docs=docs)
# Create retrieval tool
tool = NebiusRetrievalTool(
retriever=retriever,
name="nebius_search",
description="Search for information about European capitals"
)