Skip to main content

Redis

Redis is an open-source key-value store that can be used as a cache, message broker, database, vector database and more.

In the notebook, we’ll demo the SelfQueryRetriever wrapped around a Redis vector store.

Creating a Redis vector store​

First we’ll want to create a Redis vector store and seed it with some data. We’ve created a small demo set of documents that contain summaries of movies.

Note: The self-query retriever requires you to have lark installed (pip install lark) along with integration-specific requirements.

%pip install --upgrade --quiet  redis redisvl langchain-openai tiktoken lark

We want to use OpenAIEmbeddings so we have to get the OpenAI API Key.

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain_community.vectorstores import Redis
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings()
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={
"year": 1993,
"rating": 7.7,
"director": "Steven Spielberg",
"genre": "science fiction",
},
),
Document(
page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...",
metadata={
"year": 2010,
"director": "Christopher Nolan",
"genre": "science fiction",
"rating": 8.2,
},
),
Document(
page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea",
metadata={
"year": 2006,
"director": "Satoshi Kon",
"genre": "science fiction",
"rating": 8.6,
},
),
Document(
page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them",
metadata={
"year": 2019,
"director": "Greta Gerwig",
"genre": "drama",
"rating": 8.3,
},
),
Document(
page_content="Toys come alive and have a blast doing so",
metadata={
"year": 1995,
"director": "John Lasseter",
"genre": "animated",
"rating": 9.1,
},
),
Document(
page_content="Three men walk into the Zone, three men walk out of the Zone",
metadata={
"year": 1979,
"rating": 9.9,
"director": "Andrei Tarkovsky",
"genre": "science fiction",
},
),
]
index_schema = {
"tag": [{"name": "genre"}],
"text": [{"name": "director"}],
"numeric": [{"name": "year"}, {"name": "rating"}],
}

vectorstore = Redis.from_documents(
docs,
embeddings,
redis_url="redis://localhost:6379",
index_name="movie_reviews",
index_schema=index_schema,
)
`index_schema` does not match generated metadata schema.
If you meant to manually override the schema, please ignore this message.
index_schema: {'tag': [{'name': 'genre'}], 'text': [{'name': 'director'}], 'numeric': [{'name': 'year'}, {'name': 'rating'}]}
generated_schema: {'text': [{'name': 'director'}, {'name': 'genre'}], 'numeric': [{'name': 'year'}, {'name': 'rating'}], 'tag': []}

Creating our self-querying retriever​

Now we can instantiate our retriever. To do this we’ll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents.

from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI

metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string or list[string]",
),
AttributeInfo(
name="year",
description="The year the movie was released",
type="integer",
),
AttributeInfo(
name="director",
description="The name of the movie director",
type="string",
),
AttributeInfo(
name="rating", description="A 1-10 rating for the movie", type="float"
),
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)

Testing it out​

And now we can try actually using our retriever!

# This example only specifies a relevant query
retriever.get_relevant_documents("What are some movies about dinosaurs")
/Users/bagatur/langchain/libs/langchain/langchain/chains/llm.py:278: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.
warnings.warn(
query='dinosaur' filter=None limit=None
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'id': 'doc:movie_reviews:7b5481d753bc4135851b66fa61def7fb', 'director': 'Steven Spielberg', 'genre': 'science fiction', 'year': '1993', 'rating': '7.7'}),
Document(page_content='Toys come alive and have a blast doing so', metadata={'id': 'doc:movie_reviews:9e4e84daa0374941a6aa4274e9bbb607', 'director': 'John Lasseter', 'genre': 'animated', 'year': '1995', 'rating': '9.1'}),
Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'id': 'doc:movie_reviews:2cc66f38bfbd438eb3a045d90a1a4088', 'director': 'Andrei Tarkovsky', 'genre': 'science fiction', 'year': '1979', 'rating': '9.9'}),
Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'id': 'doc:movie_reviews:edf567b1d5334e02b2a4c692d853c80c', 'director': 'Satoshi Kon', 'genre': 'science fiction', 'year': '2006', 'rating': '8.6'})]
# This example only specifies a filter
retriever.get_relevant_documents("I want to watch a movie rated higher than 8.4")
query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.4) limit=None
[Document(page_content='Toys come alive and have a blast doing so', metadata={'id': 'doc:movie_reviews:9e4e84daa0374941a6aa4274e9bbb607', 'director': 'John Lasseter', 'genre': 'animated', 'year': '1995', 'rating': '9.1'}),
Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'id': 'doc:movie_reviews:2cc66f38bfbd438eb3a045d90a1a4088', 'director': 'Andrei Tarkovsky', 'genre': 'science fiction', 'year': '1979', 'rating': '9.9'}),
Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'id': 'doc:movie_reviews:edf567b1d5334e02b2a4c692d853c80c', 'director': 'Satoshi Kon', 'genre': 'science fiction', 'year': '2006', 'rating': '8.6'})]
# This example specifies a query and a filter
retriever.get_relevant_documents("Has Greta Gerwig directed any movies about women")
query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') limit=None
[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'id': 'doc:movie_reviews:bb899807b93c442083fd45e75a4779d5', 'director': 'Greta Gerwig', 'genre': 'drama', 'year': '2019', 'rating': '8.3'})]
# This example specifies a composite filter
retriever.get_relevant_documents(
"What's a highly rated (above 8.5) science fiction film?"
)
query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GTE: 'gte'>, attribute='rating', value=8.5), Comparison(comparator=<Comparator.CONTAIN: 'contain'>, attribute='genre', value='science fiction')]) limit=None
[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'id': 'doc:movie_reviews:2cc66f38bfbd438eb3a045d90a1a4088', 'director': 'Andrei Tarkovsky', 'genre': 'science fiction', 'year': '1979', 'rating': '9.9'}),
Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'id': 'doc:movie_reviews:edf567b1d5334e02b2a4c692d853c80c', 'director': 'Satoshi Kon', 'genre': 'science fiction', 'year': '2006', 'rating': '8.6'})]
# This example specifies a query and composite filter
retriever.get_relevant_documents(
"What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated"
)
query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005), Comparison(comparator=<Comparator.CONTAIN: 'contain'>, attribute='genre', value='animated')]) limit=None
[Document(page_content='Toys come alive and have a blast doing so', metadata={'id': 'doc:movie_reviews:9e4e84daa0374941a6aa4274e9bbb607', 'director': 'John Lasseter', 'genre': 'animated', 'year': '1995', 'rating': '9.1'})]

Filter k​

We can also use the self query retriever to specify k: the number of documents to fetch.

We can do this by passing enable_limit=True to the constructor.

retriever = SelfQueryRetriever.from_llm(
llm,
vectorstore,
document_content_description,
metadata_field_info,
enable_limit=True,
verbose=True,
)
# This example only specifies a relevant query
retriever.get_relevant_documents("what are two movies about dinosaurs")
query='dinosaur' filter=None limit=2
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'id': 'doc:movie_reviews:7b5481d753bc4135851b66fa61def7fb', 'director': 'Steven Spielberg', 'genre': 'science fiction', 'year': '1993', 'rating': '7.7'}),
Document(page_content='Toys come alive and have a blast doing so', metadata={'id': 'doc:movie_reviews:9e4e84daa0374941a6aa4274e9bbb607', 'director': 'John Lasseter', 'genre': 'animated', 'year': '1995', 'rating': '9.1'})]